版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題2-7導數(shù)大題求參歸類目錄TOC\o"1-1"\h\u題型01恒成立求參:常規(guī)型 1題型02恒成立求參:三角函數(shù)型 2題型03恒成立求參:雙變量型 2題型04恒成立求參:整數(shù)型 3題型05恒成立求參:三角函數(shù)型整數(shù) 4/題型06“能”成立求參:常規(guī)型 5題型07“能”成立求參:雙變量型 5題型08“能”成立求參:正余弦型 6題型09零點型求參:常規(guī)型 7題型10零點型求參:雙零點型 8題型11零點型求參:多零點綜合型 8題型12同構(gòu)型求參:x1,x2雙變量同構(gòu) 9題型13虛設(shè)零點型求參 10高考練場 10題型01恒成立求參:常規(guī)型【解題攻略】利用導數(shù)求解參數(shù)范圍的兩種常用方法:(1)分離參數(shù)法:將參數(shù)和自變量分離開來,構(gòu)造關(guān)于自變量的新函數(shù),研究新函數(shù)最值與參數(shù)之間的關(guān)系,求解出參數(shù)范圍;(2)分類討論法:根據(jù)題意分析參數(shù)的臨界值,根據(jù)臨界值作分類討論,分別求解出滿足題意的參數(shù)范圍最后取并集.【典例1-1】(2024上·北京·高三階段練習)設(shè),函數(shù).(1)討論的單調(diào)性;(2)若,求a的取值范圍;(3)若,求a.【典例1-2】(2024上·甘肅武威·高三統(tǒng)考期末)已知函數(shù).(1)當時,求的最大值;(2)若在上恒成立,求實數(shù)的取值范圍.【變式1-1】(2023上·江蘇鎮(zhèn)江·高三校考階段練習)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)a的取值范圍;(2)若對恒成立,求實數(shù)a的取值范圍.【變式1-2】(2024上·山西·高三期末)已知函數(shù),.(1)求證:函數(shù)存在單調(diào)遞減區(qū)間,并求出該函數(shù)單調(diào)遞減區(qū)間的長度的取值范圍;(2)當時,恒成立,求實數(shù)的取值范圍.【變式1-3】(2024·全國·模擬預(yù)測)已知函數(shù),.(1)求函數(shù)的單調(diào)區(qū)間;(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.題型02恒成立求參:三角函數(shù)型【解題攻略】三角函數(shù)與導數(shù)應(yīng)用求參:正余弦的有界性三角函數(shù)與函數(shù)的重要放縮公式:.【典例1-1】(2023·全國·高三專題練習)已知函數(shù),.(1)求證:時,;(2)當時,恒成立,求實數(shù)a的取值范圍;(3)當時,恒成立,求實數(shù)a的取值范圍.【典例1-2】(2023上·全國·高三期末)已知函數(shù).(1)求曲線在點處的切線方程;(2)求在區(qū)間上的最大值;(3)設(shè)實數(shù)a使得對恒成立,求a的最大整數(shù)值.【變式1-1】(2023上·湖北省直轄縣級單位·高三??茧A段練習)已知函數(shù).(1)討論的單調(diào)性;(2)若不等式對任意恒成立,求實數(shù)的取值范圍.【變式1-2】(2023上·甘肅定西·高三甘肅省臨洮中學??茧A段練習)已知函數(shù)為其導函數(shù).(1)求在上極值點的個數(shù);(2)若對恒成立,求的值.題型03恒成立求參:雙變量型【解題攻略】一般地,已知函數(shù),(1)若,,總有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有成立,故.【典例1-1】(2023·四川攀枝花·統(tǒng)考模擬預(yù)測)已知函數(shù).(1)當時,求的單調(diào)區(qū)間;(2)設(shè)函數(shù),當有兩個極值點時,總有成立,求實數(shù)的值.【典例1-2】(2024上·四川成都·高三成都七中??茧A段練習)設(shè)函數(shù),其中.(1)討論函數(shù)在上的極值;(2)若函數(shù)f(x)有兩零點,且滿足,求正實數(shù)的取值范圍.【變式1-1】(2023·上海松江·校考模擬預(yù)測)已知函數(shù).(1)若,求函數(shù)的極值點;(2)若不等式恒成立,求實數(shù)a的取值范圍;(3)若函數(shù)有三個不同的極值點、、,且,求實數(shù)a的取值范圍.【變式1-2】(2023下·山東德州·高三校考階段練習)已知函數(shù),其中.(1)討論函數(shù)的單調(diào)性;(2)若存在兩個極值點的取值范圍為,求a的取值范圍.題型04恒成立求參:整數(shù)型【解題攻略】恒成立求參的一般規(guī)律①若在上恒成立,則;②若在上恒成立,則;③若在上有解,則;④若在上有解,則;如果參數(shù)涉及到整數(shù),要注意對應(yīng)解中相鄰兩個整數(shù)點函數(shù)的符號【典例1-1】(2023上·湖北·高三校聯(lián)考階段練習)已知.(1)若恒成立,求實數(shù)的取值范同:(2)設(shè)表示不超過的最大整數(shù),已知的解集為,求.(參考數(shù)據(jù):,,)【典例1-2】(2023上·浙江·高三校聯(lián)考階段練習)已知函數(shù),,為自然對數(shù)底數(shù).(1)證明:當時,;(2)若不等式對任意的恒成立,求整數(shù)的最小值.【變式1-1】(2023·江西景德鎮(zhèn)·統(tǒng)考一模)已知函數(shù),.(1)若,求函數(shù)值域;(2)是否存在正整數(shù)a使得恒成立?若存在,求出正整數(shù)a的取值集合;若不存在,請說明理由.【變式1-2】(2023·全國·高三專題練習)已知函數(shù),.(1)若函數(shù)的圖象在點處的切線與函數(shù)的圖象相切,求k的值;(2)若,且時,恒有,求k的最大值.(參考數(shù)據(jù):)題型05恒成立求參:三角函數(shù)型整數(shù)【典例1-1】(2020·云南昆明·統(tǒng)考三模)已知.(1)證明:;(2)對任意,,求整數(shù)的最大值.(參考數(shù)據(jù):)【典例1-2】(2020上·浙江·高三校聯(lián)考階段練習)已知函數(shù),.(1)若,求函數(shù)在上的單調(diào)區(qū)間;(2)若,不等式對任意恒成立,求滿足條件的最大整數(shù)b.【變式1-1】(2022·全國·高三專題練習)已知函數(shù),為的導函數(shù).(1)討論在區(qū)間內(nèi)極值點的個數(shù);(2)若,時,恒成立,求整數(shù)的最小值.【變式1-2】(2023·云南保山·統(tǒng)考二模)設(shè)函數(shù),(1)求在區(qū)間上的極值點個數(shù);(2)若為的極值點,則,求整數(shù)的最大值./題型06“能”成立求參:常規(guī)型【解題攻略】形如的有解的求解策略:1、構(gòu)造函數(shù)法:令,利用導數(shù)求得函數(shù)的單調(diào)性與最小值,只需恒成立即可;2、參數(shù)分離法:轉(zhuǎn)化為或恒成立,即或恒成立,只需利用導數(shù)求得函數(shù)的單調(diào)性與最值即可.【典例1-1】(2023上·浙江·高三浙江省長興中學校聯(lián)考期中)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若存在,使成立,求實數(shù)的取值范圍.注:為自然對數(shù)的底數(shù).【典例1-2】(2023上·湖南長沙·高三統(tǒng)考階段練習)已知函數(shù),是的導函數(shù).(1)若,求的單調(diào)區(qū)間;(2)若存在實數(shù)使成立,求的取值范圍.【變式1-1】(2023·全國·模擬預(yù)測)已知函數(shù).(1)討論的單調(diào)性;(2)若存在,使得,求實數(shù)的最小值.【變式1-2】(2023上·黑龍江齊齊哈爾·高三統(tǒng)考階段練習)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若存在,使得,求的取值范圍.題型07“能”成立求參:雙變量型【解題攻略】一般地,已知函數(shù),(1)相等關(guān)系記的值域為A,的值域為B,①若,,有成立,則有;②若,,有成立,則有;③若,,有成立,故;(2)不等關(guān)系(1)若,,總有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有成立,故.【典例1-1】(2022·江西上饒·高三校聯(lián)考階段練習)已知函數(shù),其中a≠0.(1)若,討論函數(shù)f(x)的單調(diào)性;(2)是否存在實數(shù)a,對任意,總存在,使得成立?若存在,求出實數(shù)a的值;若不存在,請說明理由.【典例1-2】(2023上·遼寧沈陽·高三沈陽二十中校考階段練習)已知函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若存在,滿足,且,,求實數(shù)a的取值范圍.【變式1-1】(2023·全國·高三專題練習)已知函數(shù),.(1)若曲線在和處的切線互相平行,求的值;(2)求的單調(diào)區(qū)間;(3)若對任意,均存在,使得,求的取值范圍.【變式1-2】(2023上·重慶·高三校聯(lián)考階段練習)已知函數(shù).(1)當時,求函數(shù)在區(qū)間上的最大值和最小值;(2)若對任意的,均存在,使得,求a的取值范圍.題型08“能”成立求參:正余弦型【典例1-1】(2017·江蘇淮安·高三江蘇省淮安中學階段練習)函數(shù).(1)求證:函數(shù)在區(qū)間內(nèi)至少有一個零點;(2)若函數(shù)在處取極值,且,使得成立,求實數(shù)的取值范圍.【典例1-2】(2023·全國·高三專題練習)已知函數(shù)f(x)=x+2﹣2cosx(1)求函數(shù)f(x)在[,]上的最值:(2)若存在x∈(0,)使不等式f(x)≤ax成立,求實數(shù)a的取值范圍【變式1-1】(2020·四川瀘州·統(tǒng)考二模)已知函數(shù).(1)求證:當x∈(0,π]時,f(x)<1;(2)求證:當m>2時,對任意x0∈(0,π],存在x1∈(0,π]和x2∈(0,π](x1≠x2)使g(x1)=g(x2)=f(x0)成立.【變式1-2】(2023·全國·高三專題練習)已知函數(shù),.(1)若在處的切線為,求的值;(2)若存在,使得,求實數(shù)的取值范圍.題型09零點型求參:常規(guī)型【解題攻略】零點常規(guī)型求參基礎(chǔ):分類討論思想與轉(zhuǎn)化化歸思想數(shù)形結(jié)合與單調(diào)性的綜合應(yīng)用:一個零點,則多為所求范圍內(nèi)的單調(diào)函數(shù),或者“類二次函數(shù)”切線處(極值點處)3.注意“找點”難度,對于普通學生,可以用極限思維代替“找點思維”?!镜淅?-1】(2023上·安徽安慶·高一安慶市第二中學??茧A段練習)已知函數(shù)為上的偶函數(shù),為上的奇函數(shù),且.(1)求的解析式;(2)若函數(shù)在上只有一個零點,求實數(shù)的取值范圍.【典例1-2】(2023上·四川內(nèi)江·高一四川省內(nèi)江市第六中學??茧A段練習)已知函數(shù)是偶函數(shù).(1)求的值;(2)若函數(shù)無零點,求的取值范圍;(3)設(shè),(其中實數(shù)).若函數(shù)有且只有一個零點,求的取值范圍.【變式1-1】(2023上·江蘇南通·高三統(tǒng)考期中)已知.(1)試判斷函數(shù)的單調(diào)性;(2)若函數(shù)有且只有一個零點,求實數(shù)a的取值范圍.【變式1-2】(2023·陜西漢中·校聯(lián)考模擬預(yù)測)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求的最小值;(2)若函數(shù)有且只有一個零點,求的取值范圍.題型10零點型求參:雙零點型【解題攻略】利用導數(shù)解決有兩個零點,求實數(shù)的取值范圍問題,綜合性強,難點在于要分類討論參數(shù)的范圍,進而判斷函數(shù)的單調(diào)性,確定極值的正負問題,關(guān)鍵在于要多次構(gòu)造函數(shù),利用導數(shù)判斷函數(shù)單調(diào)性.【典例1-1】(2023·全國·模擬預(yù)測)已知函數(shù).(1)當時,求曲線過原點的切線的方程.(2)若有兩個零點,求實數(shù)的取值范圍.【典例1-2】(2023·四川瀘州·統(tǒng)考一模)已知函數(shù),且恒成立.(1)求實數(shù)的最大值;(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.【變式1-1】(2023·四川綿陽·鹽亭中學校考模擬預(yù)測)已知函數(shù).(1)當時,求的圖象在處的切線方程;(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.【變式1-2】(2023下·山西晉城·高三??茧A段練習)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)若有兩個零點,求實數(shù)的取值范圍.題型11零點型求參:多零點綜合型【解題攻略】三個以及三個以上零點,較復(fù)雜,綜合度較大。1、三個零點型,注意是否有容易觀察出來的零點,這樣可以轉(zhuǎn)化為兩個零點型以降低難度。2、三個零點型,可通過討論,研究函數(shù)是否是“類一元三次函數(shù)”型。3、如果函數(shù)有“斷點”,注意分段討論研究。【典例1-1】(2021下·重慶江北·高三??茧A段練習)已知函數(shù).(1)當時,討論的單調(diào)性;(2)已知函數(shù),記函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.【典例1-2】(2022上·廣西欽州·高三??茧A段練習)已知在區(qū)間,上的值域,.(1)求的值;(2)若不等式在,上恒成立,求實數(shù)的取值范圍;(3)若函數(shù)有三個零點,求實數(shù)的取值范圍.【變式1-1】(2020·浙江·模擬預(yù)測)已知函數(shù).(1)求函數(shù)的最值;(2)已知函數(shù),設(shè)函數(shù),若函數(shù)有三個零點,求實數(shù)的取值范圍.【變式1-2】(2022上·福建泉州·高三??奸_學考試)已知函數(shù).(1)求函數(shù)的極值點;(2)當時,當函數(shù)恰有三個不同的零點,求實數(shù)的取值范圍.題型12同構(gòu)型求參:x1,x2雙變量同構(gòu)【解題攻略】雙變量同構(gòu)型,較多的是含有絕對值型。1.含絕對值型,大多數(shù)都是有單調(diào)性的,所以可以通過討論去掉絕對值。2.去掉絕對值,可以通過“同構(gòu)”重新構(gòu)造函數(shù)。不含絕對值型,可以直接調(diào)整構(gòu)造函數(shù)求解【典例1-1】(2019·河南鄭州·統(tǒng)考二模)已知函數(shù).(1)曲線在點處的切線方程為,求,的值;(2)若,時,,都有,求的取值范圍.【典例1-2】(2020上·河南三門峽·高二統(tǒng)考期末)已知函數(shù).(Ⅰ)若在處的切線方程為,求a的值;(Ⅱ)若,,都有恒成立,求實數(shù)a的取值范圍.【變式1-1】(2019上·河南平頂山·高三統(tǒng)考階段練習)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)設(shè),若對任意、,且,都有,求實數(shù)的取值范圍.【變式1-2】(2019上·河南平頂山·高三統(tǒng)考階段練習)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè),,若對任意,且,都有,求實數(shù)的取值范圍..題型13虛設(shè)零點型求參【解題攻略】虛設(shè)零點轉(zhuǎn)化技巧:(1)、整體代換:把超越式子(多為指數(shù)和對數(shù)式子)轉(zhuǎn)化為普通的(如二次函數(shù)一次哈數(shù)等)可解式子,如比值代換等等。(2)、反代消參:反解參數(shù)代入,構(gòu)造單一變量的函數(shù)。如果要求解(或者要證明)的結(jié)論與參數(shù)無關(guān),則可以通過反解參數(shù),用變量(零點)表示參數(shù),然后把函數(shù)變成關(guān)于零點的單一函數(shù),再對單一變量求導就可以解決相應(yīng)的問題。(3)留參降次(留參、消去指對等超越項):如果要求解的與參數(shù)有關(guān),則可以通過消去超越項,建立含參數(shù)的方程或者不等式。恒等變形或者化簡方向時保留參數(shù),通過“降次”變換,一直降到不可再降為止,再結(jié)合條件,求解方程或者不等式,解的相應(yīng)的參數(shù)值或者參數(shù)范圍?!镜淅?-1】(2023·河南安陽·統(tǒng)考二模)已知函數(shù),.(1)若曲線有兩條過點的切線,求實數(shù)m的取值范圍;(2)若當時,不等式恒成立,求實數(shù)a的取值集合.【典例1-2】(2023·天津河北·統(tǒng)考一模)已知函數(shù).(1)求曲線在點處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)若對任意的,都有成立,求整數(shù)的最大值.【變式1-1】(2023·河南安陽·統(tǒng)考三模)已知函數(shù).(1)證明:曲線在處的切線經(jīng)過坐標原點;(2)記的導函數(shù)為,設(shè),求使恒成立的的取值范圍.【變式1-2】(2023·甘肅蘭州·??寄M預(yù)測)已知函數(shù),(,為自然對數(shù)的底數(shù)).(1)求函數(shù)的極值;(2)若對,恒成立,求的取值范圍.高考練場1.(2024·全國·模擬預(yù)測)已知函數(shù).(1)當時,討論函數(shù)的單調(diào)性;(2)若在上恒成立,求的取值范圍.2.(2023上·湖北荊州·高三沙市中學??茧A段練習)設(shè)函數(shù).(1)討論在區(qū)間上的單調(diào)性;(2)若在上恒成立,求的取值范圍.3.(2023·山東德州·三模)已知函數(shù),其中.(1)當時,求函數(shù)在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)若存在兩個極值點的取值范圍為,求的取值范圍.4.(2023下·陜西渭南·高二合陽縣合陽中學??计谀┮阎瘮?shù)(1)若,討論的單調(diào)性.(2)當時,都有成立,求整數(shù)的最大值.5.(2023·
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度民辦學校教師教學科研獎勵聘用合同4篇
- 2025版高端汽車零部件模具定制合同4篇
- 二零二五年度企業(yè)電子商務(wù)法律風險防范合同
- 2025版砂石開采與環(huán)保治理合同3篇
- 二零二五年度人才招聘居間服務(wù)合同范本(航天行業(yè)適用)2篇
- 二零二五年度圖書館建筑裝飾工程合同范本2篇
- 3 關(guān)節(jié)置換術(shù)止血與抗凝的綜合管理
- 二零二五年度裝配式內(nèi)裝工程承包合同范本4篇
- 2025年度臨街商店攤位租賃與垃圾分類處理合同3篇
- 二零二五年度企業(yè)形象宣傳片創(chuàng)意策劃與執(zhí)行合同
- 2023-2024學年度人教版一年級語文上冊寒假作業(yè)
- 培訓如何上好一堂課
- 2024醫(yī)療銷售年度計劃
- 稅務(wù)局個人所得稅綜合所得匯算清繳
- 人教版語文1-6年級古詩詞
- 上學期高二期末語文試卷(含答案)
- 軟件運維考核指標
- 空氣動力學仿真技術(shù):格子玻爾茲曼方法(LBM)簡介
- 中學英語教學設(shè)計PPT完整全套教學課件
- 移動商務(wù)內(nèi)容運營(吳洪貴)項目五 運營效果監(jiān)測
- 比較思想政治教育學
評論
0/150
提交評論