![8.3.2圓柱圓錐圓臺(tái)球的表面積和體積課件高一下學(xué)期數(shù)學(xué)人教A版_第1頁(yè)](http://file4.renrendoc.com/view14/M06/3A/31/wKhkGWbyKTiAEaW3AACr7WZrYS4514.jpg)
![8.3.2圓柱圓錐圓臺(tái)球的表面積和體積課件高一下學(xué)期數(shù)學(xué)人教A版_第2頁(yè)](http://file4.renrendoc.com/view14/M06/3A/31/wKhkGWbyKTiAEaW3AACr7WZrYS45142.jpg)
![8.3.2圓柱圓錐圓臺(tái)球的表面積和體積課件高一下學(xué)期數(shù)學(xué)人教A版_第3頁(yè)](http://file4.renrendoc.com/view14/M06/3A/31/wKhkGWbyKTiAEaW3AACr7WZrYS45143.jpg)
![8.3.2圓柱圓錐圓臺(tái)球的表面積和體積課件高一下學(xué)期數(shù)學(xué)人教A版_第4頁(yè)](http://file4.renrendoc.com/view14/M06/3A/31/wKhkGWbyKTiAEaW3AACr7WZrYS45144.jpg)
![8.3.2圓柱圓錐圓臺(tái)球的表面積和體積課件高一下學(xué)期數(shù)學(xué)人教A版_第5頁(yè)](http://file4.renrendoc.com/view14/M06/3A/31/wKhkGWbyKTiAEaW3AACr7WZrYS45145.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第八章立體幾何初步8.3.2圓柱、圓錐、圓臺(tái)、球的表面積和體積人教A版
數(shù)學(xué)
必修第二冊(cè)課程標(biāo)準(zhǔn)1.了解圓柱、圓錐、圓臺(tái)的側(cè)面展開(kāi)圖,掌握?qǐng)A柱、圓錐、圓臺(tái)、球的表面積公式及體積公式.2.能運(yùn)用公式求圓柱、圓錐、圓臺(tái)、球的表面積及體積并解決簡(jiǎn)單的實(shí)際問(wèn)題,理解柱體、錐體、臺(tái)體的體積之間的關(guān)系.3.會(huì)求組合體的表面積及體積.基礎(chǔ)落實(shí)·必備知識(shí)全過(guò)關(guān)知識(shí)點(diǎn)1
圓柱、圓錐、圓臺(tái)的表面積
πr22πrl
2πr2+2πrl
πr2
πrl
πr2+πrl
名師點(diǎn)睛運(yùn)用公式時(shí)的注意事項(xiàng)1.明確公式中各符號(hào)的含義.2.S表=S側(cè)+S底,注意所求幾何體的底面?zhèn)€數(shù).πr'2
πr2
π(r+r')l
πr2+πr'2+π(r+r')l過(guò)關(guān)自診1.判斷正誤.(正確的畫(huà)√,錯(cuò)誤的畫(huà)×)(1)圓柱的側(cè)面展開(kāi)圖是矩形.(
)(2)圓錐的側(cè)面展開(kāi)圖是扇形,扇形的半徑等于圓錐底面的半徑.(
)(3)圓臺(tái)的側(cè)面展開(kāi)圖是大扇形截掉一個(gè)小扇形的扇環(huán).(
)√×√3.[蘇教版教材習(xí)題]已知圓柱的高和底面半徑分別為a,b,求其側(cè)面積.2.圓柱、圓錐、圓臺(tái)三者的表面積公式之間有什么關(guān)系?提示
如圖所示.提示
2πab.知識(shí)點(diǎn)2
圓柱、圓錐、圓臺(tái)的體積1.V圓柱=πr2h(r是圓柱的底面半徑,h是圓柱的高)2.V圓錐=πr2h(r是圓錐的底面半徑,h是圓錐的高)3.V圓臺(tái)=πh(r'2+r'r+r2)(r',r分別是上、下底面半徑,h是高).名師點(diǎn)睛棱柱和圓柱都是柱體,棱錐和圓錐都是錐體,棱臺(tái)和圓臺(tái)都是臺(tái)體,它們的體積公式可統(tǒng)一如下:(1)V柱體=Sh(S為柱體的底面積,h為柱體高);(2)V錐體=Sh(S為錐體的底面積,h為錐體高);(3)V臺(tái)體
h(S',S分別為上、下底面面積,h為臺(tái)體高).過(guò)關(guān)自診1.柱體、錐體、臺(tái)體的體積公式之間有什么關(guān)系?提示
如圖.2.某小區(qū)修建一個(gè)圓臺(tái)形的花臺(tái),它的兩底面半徑分別為1m和2m,高為1m,那么需要多少立方米土才能把花臺(tái)填滿?(花臺(tái)壁的厚度忽略不計(jì))知識(shí)點(diǎn)3
球的表面積和體積1.S球=4πR2(R是球的半徑)2.V球=πR3(R是球的半徑)過(guò)關(guān)自診1.已知球的表面積是16π,則該球的體積為
.
2.[北師大版教材習(xí)題]地球和火星都可近似看作球體,地球半徑約為6370km,火星的直徑約為地球直徑的一半.(1)求地球的表面積和體積;(2)火星的體積約為地球體積的幾分之幾?重難探究·能力素養(yǎng)全提升探究點(diǎn)一圓柱、圓錐、圓臺(tái)的表面積【例1】
如圖,已知直角梯形ABCD,BC∥AD,∠ABC=90°,AB=5,BC=16,AD=4.求以AB所在直線為軸旋轉(zhuǎn)一周所得幾何體的表面積.變式探究在上題題設(shè)條件不變的情況下,求以BC所在直線為軸旋轉(zhuǎn)一周所得幾何體的表面積.解
以BC所在直線為軸旋轉(zhuǎn)一周所得幾何體是圓柱和圓錐的組合體,如圖.其中圓錐的高為16-4=12,圓柱的母線長(zhǎng)為AD=4,故該幾何體的表面積為2π×5×4+π×52+π×5×13=130π.規(guī)律方法
解決圓柱、圓錐、圓臺(tái)的表面積問(wèn)題,要利用好旋轉(zhuǎn)體的軸截面及平面展開(kāi)圖,借助于平面幾何知識(shí),求得所需幾何要素,代入公式求解即可,基本步驟如下:得到空間幾何體的平面展開(kāi)圖→依次求出各個(gè)平面圖形的面積→將各平面圖形的面積相加探究點(diǎn)二圓柱、圓錐、圓臺(tái)的體積【例2】
已知等邊三角形的邊長(zhǎng)為2,將該三角形繞其任一邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為
.
2π
解析
將邊長(zhǎng)為2的正三角形繞其任一邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體為一個(gè)組合體,如圖,該組合體由兩個(gè)同底的圓錐組成,兩個(gè)圓錐的底面半徑為規(guī)律方法
求圓柱、圓錐、圓臺(tái)的體積問(wèn)題,一是要牢記公式,然后觀察空間圖形的構(gòu)成,是單一的旋轉(zhuǎn)體,還是組合體;二是注意旋轉(zhuǎn)體的構(gòu)成,以及圓柱、圓錐、圓臺(tái)軸截面的性質(zhì),從而找出公式中需要的各個(gè)量,代入公式計(jì)算.變式訓(xùn)練1[蘇教版教材例題]有一堆相同規(guī)格的六角螺帽毛坯(如圖)共重6kg.已知毛坯底面正六邊形邊長(zhǎng)是12mm,高是10mm,內(nèi)孔直徑是10mm.那么這堆毛坯約有多少個(gè)(鐵的密度是7.8g/cm3)?所以一個(gè)毛坯的體積為V=3.741×103-0.785×103=2.956×103(mm3)=2.956(cm3).從而這堆毛坯約有6×103÷(7.8×2.956)≈260(個(gè)).探究點(diǎn)三球的表面積和體積【例3】
若兩球的表面積之差為48π,它們的半徑之和為6,則兩球的體積之差的絕對(duì)值為
.
規(guī)律方法
因?yàn)榍虻谋砻娣e與體積都是球半徑的函數(shù),所以在解答這類問(wèn)題時(shí),設(shè)法求出球的半徑是解題的關(guān)鍵.變式訓(xùn)練2一個(gè)圓柱的底面直徑與高相等,且該圓柱的表面積與球O表面積相等,則球O的半徑與圓柱底面半徑之比為(
)A探究點(diǎn)四簡(jiǎn)單的幾何體的外接球和內(nèi)切球問(wèn)題【例4】
若棱長(zhǎng)為2的正方體的頂點(diǎn)都在同一球面上,則該球的表面積為(
)A.12π B.24πC.36π D.144πB解析
正方體外接球的球心在體對(duì)角線的中點(diǎn),設(shè)半徑為R,則(2R)2=3×(2)2,即4R2=24,所以球的表面積為4πR2=24π.故選B.規(guī)律方法
解決幾何體的外接球和內(nèi)切球問(wèn)題的關(guān)鍵是確定球的球心位置,然后求半徑.內(nèi)切球的半徑常用等體積法;簡(jiǎn)單幾何體的外接球,如長(zhǎng)方體的外接球,根據(jù)長(zhǎng)方體的體對(duì)角線即為外接球的直徑求解,其中若長(zhǎng)方體的體對(duì)角線及長(zhǎng)、寬、高分別為l,a,b,c,則l2=a2+b2+c2.變式訓(xùn)練3若三棱錐的三條側(cè)棱兩兩垂直,且三條側(cè)棱長(zhǎng)分別為
則其外接球的表面積是
.
6π本節(jié)要點(diǎn)歸納1.知識(shí)清單:(1)圓柱、圓錐、圓臺(tái)的表面積.(2)圓柱、圓錐、圓臺(tái)的體積.(3)球的表面積和體積.2.方法歸納:公式法.3.常見(jiàn)誤區(qū):平面圖形與立體圖形切換不清楚.成果驗(yàn)收·課堂達(dá)標(biāo)檢測(cè)1234567891011121314151617181920A級(jí)必備知識(shí)基礎(chǔ)練1.(多選題)[探究點(diǎn)一、二]一個(gè)圓柱和一個(gè)圓錐的底面直徑和它們的高都與一個(gè)球的直徑2R相等,下列結(jié)論正確的是(
)A.圓柱的側(cè)面積為2πR2B.圓錐的側(cè)面積為2πR2C.圓柱的側(cè)面積與球的表面積相等D.圓柱、圓錐、球的體積之比為3∶1∶2CD123456789101112131415161718192012345678910111213141516171819202.[探究點(diǎn)三]若一個(gè)正方體內(nèi)接于表面積為4π的球,則正方體的表面積等于(
)B1234567891011121314151617181920A12345678910111213141516171819204.[探究點(diǎn)二]《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有委米依垣內(nèi)角,下周八尺,高五尺.問(wèn):積及為米幾何?”其意思為:“在屋內(nèi)墻角處堆放米(如圖,米堆為一個(gè)圓錐的四分之一),米堆底部的弧長(zhǎng)為8尺,米堆的高為5尺,問(wèn)米堆的體積和堆放的米各為多少?”已知1斛米的體積約為1.62立方尺,圓周率約為3,估算出堆放的米約有(
)A.14斛
B.22斛
C.36斛
D.66斛
B12345678910111213141516171819205.[探究點(diǎn)一、二]已知一個(gè)圓錐的體積為3π,其側(cè)面積是底面積的2倍,則其底面半徑為(
)C12345678910111213141516171819206.[探究點(diǎn)一]已知圓柱的底面半徑為1,若圓柱的側(cè)面展開(kāi)圖的面積為8π,則圓柱的高為
.
4解析
設(shè)圓柱的高為h,又圓柱的底面半徑為1,有2π×1×h=8π,得h=4.12345678910111213141516171819207.[探究點(diǎn)四]如圖,球O的半徑為5,一個(gè)內(nèi)接圓臺(tái)的兩底面半徑分別為3和4(球心O在圓臺(tái)的兩底面之間),則圓臺(tái)的體積為
.
12345678910111213141516171819208.[探究點(diǎn)三]某組合體的直觀圖如圖所示,它的中間為圓柱形,左右兩端均為半球形,若圖中r=1,l=3,試求該組合體的表面積和體積.12345678910111213141516171819209.[探究點(diǎn)一、二]如圖所示,在底面半徑為2,母線長(zhǎng)為4的圓錐中內(nèi)接一個(gè)高為
的圓柱,求該圓柱的體積及表面積.12345678910111213141516171819201234567891011121314151617181920B級(jí)關(guān)鍵能力提升練10.某圓臺(tái)上、下底面面積分別是4π、9π,母線長(zhǎng)為2,則這個(gè)圓臺(tái)的側(cè)面積是(
)A.10π
B.12π
C.15π
D.20πA1234567891011121314151617181920D123456789101112131415161718192012.(多選題)已知圓錐底面半徑為3,高為4,則下列說(shuō)法正確的是(
)A.圓錐的體積是36πB.圓錐的側(cè)面積是15πBD123456789101112131415161718192013.(多選題)一個(gè)圓臺(tái)的上、下底面半徑分別是10和20,它的側(cè)面展開(kāi)圖扇環(huán)的圓心角為180°,則圓臺(tái)的(
)A.母線長(zhǎng)是20 B.表面積是1100πABD解析
如圖所示,設(shè)圓臺(tái)兩條母線的交點(diǎn)是S,其中一條母線是AB,圓臺(tái)的上底面圓的周長(zhǎng)為C,因?yàn)樯拳h(huán)的圓心角為180°,所以C=π·SA,又C=10×2π,所以SA=20,同理SB=40,故圓臺(tái)的母線AB=SB-SA=20,1234567891011121314151617181920123456789101112131415161718192014.我國(guó)古代數(shù)學(xué)名著《數(shù)書(shū)九章》中有“天池盆測(cè)雨”題,大概意思如下:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為1尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)(
)A.3寸
B.4寸
C.5寸
D.6寸A123456789101112131415161718192015.如果我們把高和底面半徑相等的圓錐稱為“標(biāo)準(zhǔn)圓錐”,那么母線長(zhǎng)為2的“標(biāo)準(zhǔn)圓錐”的體積為
.
123456789101112131415161718192016.一個(gè)正方體和一個(gè)圓柱等高,并且側(cè)面面積相等,則這個(gè)正方體和圓柱的體積的比值為
.
123456789101112131415161718192017.把底面半徑為8cm的圓錐放倒在一平面上,使圓錐在此平面內(nèi)繞圓錐頂點(diǎn)S滾動(dòng),當(dāng)這個(gè)圓錐在平面內(nèi)轉(zhuǎn)回原位置時(shí),圓錐本身滾動(dòng)了2.5周,則圓錐的母線長(zhǎng)為
,表面積等于
.
20
cm224π
cm2
解析
設(shè)圓錐的母線長(zhǎng)為l,底面半徑為r.以S為圓心,l為半徑的圓的面積為πl(wèi)2.圓錐的側(cè)面積為πrl=8πl(wèi).根據(jù)圓錐在平面內(nèi)轉(zhuǎn)到原位置時(shí),圓錐本身滾動(dòng)了2.5周,∴πl(wèi)2=2.5×8πl(wèi),∴l(xiāng)=20(cm).圓錐的表面積S=S圓錐側(cè)+S底=π×8×20+π×82=224π(cm2).12345678910111213141516171819
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年生態(tài)建設(shè)策劃與綠色發(fā)展戰(zhàn)略協(xié)議
- 2025年人工智能技術(shù)研發(fā)合作協(xié)議
- 2025年專利權(quán)保護(hù)協(xié)議范例
- 2025年數(shù)據(jù)中心維護(hù)服務(wù)合同協(xié)議
- 2025年度會(huì)員卡購(gòu)買(mǎi)與銷(xiāo)售協(xié)議范本
- 2025年臨時(shí)用工派遣協(xié)議樣本
- 2025年勞動(dòng)安全賠償協(xié)議書(shū)倡議
- 2025年市場(chǎng)營(yíng)銷(xiāo)內(nèi)部資料保密協(xié)議
- 2025年官方債權(quán)轉(zhuǎn)讓協(xié)議范例
- 2025年企業(yè)長(zhǎng)期轎車(chē)租賃服務(wù)協(xié)議合同范本
- AQ6111-2023個(gè)體防護(hù)裝備安全管理規(guī)范
- (正式版)JBT 9229-2024 剪叉式升降工作平臺(tái)
- 中國(guó)紅十字會(huì)救護(hù)員培訓(xùn)理論考試試題及答案
- 兒童體液平衡及液體療法課件
- 2023版押品考試題庫(kù)必考點(diǎn)含答案
- 最新《工會(huì)基礎(chǔ)知識(shí)》試題庫(kù)及答案1000題【完美打印版】
- Unit2 School life - 復(fù)習(xí)課課件 牛津譯林版英語(yǔ)八年級(jí)上冊(cè)
- 中醫(yī)腰痛病個(gè)案護(hù)理
- 三級(jí)安全管理標(biāo)準(zhǔn)化評(píng)定標(biāo)準(zhǔn)
- 農(nóng)光互補(bǔ)光伏電站項(xiàng)目土建主要施工方案
- 涂料化學(xué) 氟硅樹(shù)脂
評(píng)論
0/150
提交評(píng)論