版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
吉林省磐石市吉昌中學2023-2024學年中考數(shù)學最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.4的平方根是()A.4 B.±4 C.±2 D.22.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.3.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-14.下列各式計算正確的是()A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6C.a(chǎn)3?a=a4 D.(﹣a2b)3=a6b35.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.66.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的圖象可能是()A. B. C. D.7.已知一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形8.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.9.如圖,這是根據(jù)某班40名同學一周的體育鍛煉情況繪制的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數(shù)、中位數(shù)分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.510.若關(guān)于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,△ABC的頂點是正方形網(wǎng)格的格點,則sinA的值為____.12.已知是整數(shù),則正整數(shù)n的最小值為___13.如圖,AB,AC分別為⊙O的內(nèi)接正六邊形,內(nèi)接正方形的一邊,BC是圓內(nèi)接n邊形的一邊,則n等于_____.14.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點都在y=的圖象上,則yl,y2,y3的大小關(guān)系是_____.(用“<”號填空)15.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.16.在一次數(shù)學測試中,同年級人數(shù)相同的甲、乙兩個班的成績統(tǒng)計如下表:班級平均分中位數(shù)方差甲班乙班數(shù)學老師讓同學們針對統(tǒng)計的結(jié)果進行一下評估,學生的評估結(jié)果如下:這次數(shù)學測試成績中,甲、乙兩個班的平均水平相同;甲班學生中數(shù)學成績95分及以上的人數(shù)少;乙班學生的數(shù)學成績比較整齊,分化較小.上述評估中,正確的是______填序號三、解答題(共8題,共72分)17.(8分)如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.判斷直線CD和⊙O的位置關(guān)系,并說明理由.過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求BE的長.18.(8分)雅安地震,某地駐軍對道路進行清理.該地駐軍在清理道路的工程中出色完成了任務.這是記者與駐軍工程指揮部的一段對話:記者:你們是用9天完成4800米長的道路清理任務的?指揮部:我們清理600米后,采用新的清理方式,這樣每天清理長度是原來的2倍.通過這段對話,請你求出該地駐軍原來每天清理道路的米數(shù).19.(8分)霧霾天氣嚴重影響市民的生活質(zhì)量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調(diào)查了所在城市部分市民,并對調(diào)查結(jié)果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:組別霧霾天氣的主要成因百分比A工業(yè)污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據(jù)統(tǒng)計圖表回答下列問題:本次被調(diào)查的市民共有多少人?并求和的值;請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應的圓心角的度數(shù);若該市有100萬人口,請估計市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù).20.(8分)如圖,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,.(1)求直線的表達式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.21.(8分)已知A、B、C三地在同一條路上,A地在B地的正南方3千米處,甲、乙兩人分別從A、B兩地向正北方向的目的地C勻速直行,他們分別和A地的距離s(千米)與所用的時間t(小時)的函數(shù)關(guān)系如圖所示.(1)圖中的線段l1是(填“甲”或“乙”)的函數(shù)圖象,C地在B地的正北方向千米處;(2)誰先到達C地?并求出甲乙兩人到達C地的時間差;(3)如果速度慢的人在兩人相遇后立刻提速,并且比先到者晚1小時到達C地,求他提速后的速度.22.(10分)如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設直線PB與直線AC交于點E.求∠BAC的度數(shù);當點D在AB上方,且CD⊥BP時,求證:PC=AC;在點P的運動過程中①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);②設⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.23.(12分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.24.為實施“農(nóng)村留守兒童關(guān)愛計劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)平方根的定義,求數(shù)a的平方根,也就是求一個數(shù)x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根.2、B【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合.【詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.3、D【解析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當1-a=0時,即a=1,整式方程無解,當x+1=0,即x=-1時,分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點睛:本題考查了分式方程的解,解決本題的關(guān)鍵是熟記分式方程無解的條件.4、C【解析】各項計算得到結(jié)果,即可作出判斷.解:A、原式=4a2﹣b2,不符合題意;B、原式=3a3,不符合題意;C、原式=a4,符合題意;D、原式=﹣a6b3,不符合題意,故選C.5、B【解析】
作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應B點,所以相當是把△AOC繞點A逆時針旋轉(zhuǎn)90°得到△ABD,根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據(jù)反比例函數(shù)圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應B點,即把△AOC繞點A逆時針旋轉(zhuǎn)90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k6、C【解析】
根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.故選C.【點睛】本題考查了函數(shù)圖像的性質(zhì),屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關(guān)系是解題關(guān)鍵.7、D【解析】
根據(jù)多邊形的外角和是360°,以及多邊形的內(nèi)角和定理即可求解.【詳解】設多邊形的邊數(shù)是n,則(n?2)?180=3×360,解得:n=8.故選D.【點睛】此題考查多邊形內(nèi)角與外角,解題關(guān)鍵在于掌握其定理.8、C【解析】
由正方形的性質(zhì)知DG=CG-CD=2、AD∥GF,據(jù)此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練掌握正方形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.9、A【解析】
根據(jù)中位數(shù)、眾數(shù)的概念分別求得這組數(shù)據(jù)的中位數(shù)、眾數(shù).【詳解】解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),即8;而將這組數(shù)據(jù)從小到大的順序排列后,處于20,21兩個數(shù)的平均數(shù),由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是9.故選A.【點睛】考查了中位數(shù)、眾數(shù)的概念.本題為統(tǒng)計題,考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會錯誤地將這組數(shù)據(jù)最中間的那個數(shù)當作中位數(shù).10、B【解析】
解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關(guān)于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】
解:連接CE,∵根據(jù)圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點:勾股定理;三角形的面積;銳角三角函數(shù)的定義.12、1【解析】
因為是整數(shù),且,則1n是完全平方數(shù),滿足條件的最小正整數(shù)n為1.【詳解】∵,且是整數(shù),
∴是整數(shù),即1n是完全平方數(shù);
∴n的最小正整數(shù)值為1.
故答案為:1.【點睛】主要考查了二次根式的定義,關(guān)鍵是根據(jù)乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數(shù)是非負數(shù)進行解答.13、12【解析】連接AO,BO,CO,如圖所示:∵AB、AC分別為⊙O的內(nèi)接正六邊形、內(nèi)接正方形的一邊,∴∠AOB==60°,∠AOC==90°,∴∠BOC=30°,∴n==12,故答案為12.14、y3<y1<y1【解析】
根據(jù)反比例函數(shù)的性質(zhì)k<0時,在每個象限,y隨x的增大而增大,進行比較即可.【詳解】解:k=-1<0,∴在每個象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1【點睛】本題考查的是反比例函數(shù)的性質(zhì),理解性質(zhì):當k>0時,在每個象限,y隨x的增大而減小,k<0時,在每個象限,y隨x的增大而增大是解題的關(guān)鍵.15、1:1【解析】
根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點,∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學生的推理能力.16、【解析】
根據(jù)平均數(shù)、中位數(shù)和方差的意義分別對每一項進行解答,即可得出答案.【詳解】解:∵甲班的平均成績是92.5分,乙班的平均成績是92.5分,∴這次數(shù)學測試成績中,甲、乙兩個班的平均水平相同;故正確;∵甲班的中位數(shù)是95.5分,乙班的中位數(shù)是90.5分,甲班學生中數(shù)學成績95分及以上的人數(shù)多,故錯誤;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班學生的數(shù)學成績比較整齊,分化較??;故正確;上述評估中,正確的是;故答案為:.【點睛】本題考查平均數(shù)、中位數(shù)和方差,平均數(shù)表示一組數(shù)據(jù)的平均程度中位數(shù)是將一組數(shù)據(jù)從小到大或從大到小重新排列后,最中間的那個數(shù)或最中間兩個數(shù)的平均數(shù);方差是用來衡量一組數(shù)據(jù)波動大小的量.三、解答題(共8題,共72分)17、解:(1)直線CD和⊙O的位置關(guān)系是相切,理由見解析(2)BE=1.【解析】試題分析:(1)連接OD,可知由直徑所對的圓周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,從而得∠CDO=90°,根據(jù)切線的判定即可得出;(2)由已知利用勾股定理可求得DC的長,根據(jù)切線長定理有DE=EB,根據(jù)勾股定理得出方程,求出方程的解即可.試題解析:(1)直線CD和⊙O的位置關(guān)系是相切,理由是:連接OD,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直線CD是⊙O的切線,即直線CD和⊙O的位置關(guān)系是相切;(2)∵AC=2,⊙O的半徑是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,設DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,則(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考點:1、切線的判定與性質(zhì);2、切線長定理;3、勾股定理;4、圓周角定理18、1米.【解析】試題分析:根據(jù)題意可以列出相應的分式方程,然后解分式方程,即可得到結(jié)論.試題解析:解:設原來每天清理道路x米,根據(jù)題意得:解得,x=1.檢驗:當x=1時,2x≠0,∴x=1是原方程的解.答:該地駐軍原來每天清理道路1米.點睛:本題考查分式方程的應用,解題的關(guān)鍵是明確分式方程的解答方法,注意分式方程要驗根.19、(1)200人,;(2)見解析,;(3)75萬人.【解析】
(1)用A類的人數(shù)除以所占的百分比求出被調(diào)查的市民數(shù),再用B類的人數(shù)除以總?cè)藬?shù)得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數(shù),從而可補全條形統(tǒng)計圖,用360度乘以n即可得扇形區(qū)域所對應的圓心角的度數(shù);(3)用該市的總?cè)藬?shù)乘以持有A、B兩類所占的百分比的和即可.【詳解】(1)本次被調(diào)查的市民共有:(人),∴,;(2)組的人數(shù)是(人)、組的人數(shù)是(人),∴;補全的條形統(tǒng)計圖如下圖所示:扇形區(qū)域所對應的圓心角的度數(shù)為:;(3)(萬),∴若該市有100萬人口,市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數(shù)約為75萬人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、統(tǒng)計表,讀懂圖形,找出必要的信息是解題的關(guān)鍵.20、(1);(2);(3)【解析】
(1)由條件可求得A、C的坐標,利用待定系數(shù)法可求得直線AC的表達式;(2)結(jié)合圖形,當直線平移到過C、A時與矩形有一個公共點,則可求得b的取值范圍;(3)由題意可知直線l過(0,10),結(jié)合圖象可知當直線過B點時與矩形有一個公共點,結(jié)合圖象可求得k的取值范圍.【詳解】解:(1),設直線表達式為,,解得直線表達式為;(2)直線可以看到是由直線平移得到,當直線過時,直線與矩形有一個公共點,如圖1,當過點時,代入可得,解得.當過點時,可得直線與矩形有公共點時,的取值范圍為;(3),直線過,且,如圖2,直線繞點旋轉(zhuǎn),當直線過點時,與矩形有一個公共點,逆時針旋轉(zhuǎn)到與軸重合時與矩形有公共點,當過點時,代入可得,解得直線:與矩形沒有公共點時的取值范圍為【點睛】本題為一次函數(shù)的綜合應用,涉及待定系數(shù)法、直線的平移、旋轉(zhuǎn)及數(shù)形結(jié)合思想等知識.在(1)中利用待定系數(shù)法是解題的關(guān)鍵,在(2)、(3)中確定出直線與矩形OABC有一個公共點的位置是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度適中.21、(1)乙;3;(2)甲先到達,到達目的地的時間差為小時;(3)速度慢的人提速后的速度為千米/小時.【解析】分析:(1)根據(jù)題意結(jié)合所給函數(shù)圖象進行判斷即可;(2)由所給函數(shù)圖象中的信息先求出二人所對應的函數(shù)解析式,再由解析式結(jié)合圖中信息求出二人到達C地的時間并進行比較、判斷即可得到本問答案;(3)根據(jù)圖象中的信息結(jié)合(2)中的結(jié)論進行解答即可.詳解:(1)由題意結(jié)合圖象中的信息可知:圖中線段l1是乙的圖象;C地在B地的正北方6-3=3(千米)處.(2)甲先到達.設甲的函數(shù)解析式為s=kt,則有4=t,∴s=4t.∴當s=6時,t=.設乙的函數(shù)解析式為s=nt+3,則有4=n+3,即n=1.∴乙的函數(shù)解析式為s=t+3.∴當s=6時,t=3.∴甲、乙到達目的地的時間差為:(小時).(3)設提速后乙的速度為v千米/小時,∵相遇處距離A地4千米,而C地距A地6千米,∴相遇后需行2千米.又∵原來相遇后乙行2小時才到達C地,∴乙提速后2千米應用時1.5小時.即,解得:,答:速度慢的人提速后的速度為千米/小時.點睛:本題考查的是由函數(shù)圖象中獲取相關(guān)信息來解決問題的能力,解題的關(guān)鍵是結(jié)合題意弄清以下兩點:(1)函數(shù)圖象上點的橫坐標和縱坐標各自所表示是實際意義;(2)圖象中各關(guān)鍵點(起點、終點、交點和轉(zhuǎn)折點)的實際意義.22、(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】
(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;(2)分當B在PA的中垂線上,且P在右時;B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時;A在PB的中垂線上,且P在左時四中情況求解;(3)①先說明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長,然后利用割補法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD?PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.【詳解】(1)解:(1)連接BC,∵AB是直徑,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂線,∴CP=CB=CA,(3)①(Ⅰ)如圖2,當B在PA的中垂線上,且P在右時,∠ACD=15°;(Ⅱ)如圖3,當B在PA的中垂線上,且P在左,∠ACD=105°;(Ⅲ)如圖4,A在PB的中垂線上,且P在右時∠ACD=60°;(Ⅳ)如圖5,A在PB的中垂線上,且
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度網(wǎng)絡安全服務協(xié)議書
- 2024年度版權(quán)使用與授權(quán)合同
- 2024供水、供電合同范文
- 2024年建筑工程股權(quán)轉(zhuǎn)讓合同樣本
- 2024城市軌道交通安檢設備采購合同
- 文書模板-產(chǎn)品委外開發(fā)合作協(xié)議書
- 產(chǎn)業(yè)新城課件教學課件
- 2024年度企業(yè)品牌形象設計及VI手冊整編合同
- 2024年度版權(quán)購買與授權(quán)合同具體內(nèi)容
- 2024年廢物回收居間買賣合同
- 工程進度款申請表(完整)
- 學習型寢室申請表
- 液壓缸緩沖間隙參數(shù)計算
- BP神經(jīng)網(wǎng)絡擬合函數(shù)
- 大學體育理論(山東聯(lián)盟)智慧樹知到課后章節(jié)答案2023年下泰山學院
- 兩票管理指南
- 人教版二年級上冊《道德與法治》全冊教學課件+單元復習課件PPT
- 2023年江蘇省五年制專轉(zhuǎn)本英語統(tǒng)考真題(試卷+答案)
- 智能云停車系統(tǒng)委托開發(fā)合同
- 抖音旅行社商家境外游直播活動策劃方案旅行社抖音直播教程
- 大宇迷你破壁機說明書
評論
0/150
提交評論