




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
習(xí)題
一、選擇題
1.下列有關(guān)Hadoop的說法正確的是(ABCD工
A.Hadoop最早起源于Nulch
B.Hadoop中HDFS的理念來源于谷歌發(fā)表的分布式文件系統(tǒng)(GFS)的論文
C.Hadoop中M叩Reduce的思想來源于谷歌分布式計算框架M叩Reduce的論文
D.Hadoop是在分布式服務(wù)器集群上存儲海量數(shù)據(jù)并運行分布式分析應(yīng)用的一個開源的
軟件框架
2.使用Hadoop的原因是(ABCD\
A.方便:Hadoop運行在由一般商用機器構(gòu)成的大型集群上或者云計算服務(wù)上
B.穩(wěn)?。篐adoop致力于在一般商用硬件上運行,具架構(gòu)假設(shè)硬件會頻繁失效,Hadoop
可以從容地處理大多數(shù)此類故障
C.可擴展:Hadoop通過增加集群節(jié)點,可以線性地擴展以處理更大的數(shù)據(jù)集
D.簡單:Hadoop允許用戶快速編寫高效的并行代碼
3.Hadoop的作者是(B1
A.MartinFowlerB.DcugCuttingC.KentBeckD.GraceHopper
4.以下關(guān)于大數(shù)據(jù)特點的描述中,不正確的是(ABCX
A.巨大的數(shù)據(jù)量B.多結(jié)構(gòu)化數(shù)據(jù)C.增長速度快D.價值密度高
二、簡答題
1.Hadoop是一個什么樣的框架?
答:Hadoop是一款由Apache基金會開發(fā)的可靠的、可伸縮的分布式計算的開源軟件。它
允許使用簡單的編程模型在跨計算機集群中對大規(guī)模數(shù)據(jù)集進(jìn)行分布式處理。
2.Hadoop的核心組件有哪些?簡單介紹每一個組件的作用。
答:核心組件有HDFS、MapReduce、YARN。
HDFS(HadoopDistributedFileSystem,Hadoop分布式文件系統(tǒng))是Hadoop的核心組件之
-,作為最底層的分布式存儲服務(wù)而存在。它是一個高度容錯的系統(tǒng),能檢測和應(yīng)對硬件故障,
可在低成本的通用硬件上運行。
MapReduce是Hadoop的一個分布式計算框架也是一種大規(guī)模數(shù)據(jù)集并行運算的編程模型,
主要用于處理海量數(shù)據(jù)的運算。MapReduce主要包括map(映射)和reduce(規(guī)約)兩部分。它
是一個分布式運算程序的編程框架,其核心功能是將用戶編寫的業(yè)務(wù)邏輯代碼和自帶的默認(rèn)組
件整合成一個完整的分布式運算程序,并發(fā)運行在Hadoop集群上。
HadoopYARN是開源Hadoop分布式處理框架中的資源管理和作業(yè)調(diào)度框架,主要負(fù)責(zé)將
系統(tǒng)資源分配給在Hadoop集群中運行的各種應(yīng)用程序,并調(diào)度在不同集群節(jié)點上執(zhí)行的任務(wù)
3.簡述Hadoop生態(tài)體系,并列舉此生態(tài)體系中涉及的技術(shù)。
答:當(dāng)今的Hadoop已經(jīng)成長為一個龐大的生態(tài)體系,隨著生態(tài)體系的成長,新出現(xiàn)的項目
也越來越多,其中不乏一些非Apache主管的項目,這些項目對Hadoop做了更好的補充或者更
高層的抽象,涉及的技術(shù)有HBase、Hive、Sqoop、Pig、Flume、Oozie、ZooKeeper、kafka、Spark
等。
4.簡單列舉幾個Hadoop的應(yīng)用場景。
答:(1)在線旅游
(2)電子商務(wù)
(3)移動數(shù)據(jù)
(4)能源發(fā)現(xiàn)
(5)節(jié)約能源
(6)圖像處理
(7)醫(yī)療保健
(8)IT矽
(9)欺詐檢測
(10)基礎(chǔ)設(shè)施管理
習(xí)題
一、填空題
1.Hadoop集群中的節(jié)點__DataNode―負(fù)責(zé)HDFS的數(shù)據(jù)存儲。
2.Hadoop集群中的Jobtracker程序通常與NameNode在一個節(jié)點啟動。
3.Hadoop的運行模式有獨立(本地)運行模式、偽分布式運行模式和完全分布式運行
環(huán)境。
4.Hadoop集群搭建中常用的4個配置文44^hadoop-env.sh、core-sile.xml.mapred-
site,.xml1口yarn-site.xml〃
二、操作題
1?根據(jù)2.2節(jié)偽分布式安裝的安裝及配置步驟,在自己計算機上搭建偽分布式Hadoop集群
環(huán)境,環(huán)境搭建完畢后通過命令及Web訪問方式直看集群的啟動情況。
答:具體步驟見章節(jié)內(nèi)容。
2.根據(jù)23節(jié)完全分布式安裝的安裝及配置步驟,根據(jù)自己計算機的實際配置情況分析是
否可以搭建至少2臺節(jié)點的完全分布式Hadoop集群環(huán)境,如果配置允許則搭建完全分布式集群
環(huán)境,搭建完畢后通過命令或Web訪問方式查看集群的啟動信息。
答:具體步驟見章節(jié)內(nèi)容。
習(xí)題
一、填空題
1.由于NameNode宕機,導(dǎo)致無法對外提供服務(wù),可通過搭建__HDFSHA__來解決。
2.YARN的高可用主要是解決ResourceManager單點故障。
3.由于HDFS存儲數(shù)據(jù)量過大,導(dǎo)致NameNode內(nèi)存不足,可以通過搭建聯(lián)邦
來解決。
二、簡答題
1.Hadoop是如何解決高可用問題的?
答:對于Hadoop集群,RM和NN都是"SinglePointofFailure(單點故障)",起著"一票否
決”的作用,所以Hadoop對NN和RM都提供了HA選項,采用的都是Active/Standby的措施來
達(dá)到HA的要求。所謂Active/Standby是一種熱備方案,這種方案中,"在位"的行使職權(quán)的Active
的管理者只有一個,但有一個作為備份(即Standby)的彳斯卜管理者時刻準(zhǔn)備著,當(dāng)Active的管
理者發(fā)生故障,Standby的管理者就立刻頂上,并進(jìn)行業(yè)務(wù)的接管,不用臨時開機和初始化。
2.簡述ZooKeeper的功能及其在Hadoop高可用中起到的作用。
答:ZooKccpcr主要用來解決分布式應(yīng)用中經(jīng)常遇到的一些數(shù)據(jù)管理問題,如統(tǒng)一命名服務(wù)、
狀態(tài)同步服務(wù)、集群管理、分布式應(yīng)用配置項的管理等。
在Hadoop的HA集群中,使用ZooKeeper的存儲功能可保存NameNode的狀態(tài)信
息,ZooKeeper會監(jiān)聽兩個NameNode的工作狀態(tài)當(dāng)狀態(tài)發(fā)生改變時由其協(xié)調(diào)Active與Standby
狀態(tài)的切換。
3.YARN是如何解決高可用問題的?
答:Hadoop在2.4版本之后,針對YARN弓|入了HA機制,也就是ResourceManager的
Active/Standby,YARN的HA與HDFS的HA基本相同,但YARNHA能夠支持多個Standby的
ResourceManager(Hadoop2.x的HDFSHA只允許有一^Standby的NamcNodc,Hadoop3.x之
后,允許有多個Standby的NameNode),Active和Standby的狀態(tài)可以通過控制臺命令手動切
換,也可以自動切換。
4.Hadoop聯(lián)邦解決了什么問題?
答:Hadoop集群啟動后,NameNode在內(nèi)存中保存了文件和塊的映射關(guān)系,這意味著對于
一個擁有大量文件的超大集群來說,由于數(shù)據(jù)量太大,NameNode的內(nèi)存中可能也無法放下這么
多的對應(yīng)關(guān)系,內(nèi)存將成為限制系統(tǒng)橫向擴展的瓶頸。Hadoop2.x版本中引入了HDFS聯(lián)邦機制
來解決這個問題
一、選擇題
1.數(shù)據(jù)塊(block)的大小由(A)參數(shù)決定。
A.dfs.blocksizeB.fs.replicationC.fs.defaultFSD.dfs.block
2.創(chuàng)建HDFS新目錄"/newdir"的命令為(D1
A.hadoopmkdir/newdirB.hadoopismkdir/newdir
C.hadoopfs-mkdirnewdirD.hadoopfs-mkdir/newdir
二、簡答題
簡述HDFS的寫數(shù)據(jù)流程。
答:(1)客戶端首先與NameNode建立連接,發(fā)起文件上傳請求。
(2)NameNode檢杳上傳路徑是否存在,目標(biāo)文件是否存在,權(quán)限是否允許。若無問題則修
改命名空間,并反饋允許上傳。
(3)客戶端收到允許上傳反饋后再次請求第一個Block所在的節(jié)點名。
(4)NameNode根據(jù)機架感知原整取三個節(jié)點(DalaNodel、DalaNode2、DataNode3)并
將其反饋給客戶端。
(5)客戶端從獲取的三個節(jié)點中選取一個節(jié)點建立管道(Pipeline)連接,請求上傳數(shù)據(jù)。節(jié)
點1收到請求后與節(jié)點2獲取連接,節(jié)點2收到請求后與節(jié)點3獲取連接。
(6)連接全部建立成功后,客戶端開始向第一個節(jié)點傳輸?shù)谝粋€Block。該Block數(shù)據(jù)以
Packet為單位進(jìn)行傳輸。數(shù)據(jù)的校驗則是以更小的Chunk單位進(jìn)行的,數(shù)據(jù)在客戶端本地和
DataNode端都有讀取和寫入的緩存隊列。每一次Packet在Pipeline上的傳輸都需要反向應(yīng)答。
直到寫完預(yù)定的Block為止。節(jié)點1、節(jié)點2和節(jié)點3之間也會以同樣的方式同步傳輸。
(7)當(dāng)?shù)谝粋€Block傳輸完畢后,客戶端會再次發(fā)送請求到NameNode,將整個流程再次重
復(fù)。
三、編程題
編寫程序完成HDFS文件系統(tǒng)根目錄下所有文件的列舉。
Configurationconf=newConfiguration();
hdfs=FileSystem.get(newURIiHDFS.PATH),conf,"hadoop");
Stringpath=
FileStatusQlistStatus=hdfs.listStatus(newPath(path));
for(FileStatusfs:listStatus){
system.out.|println(fs.getPath())
);
習(xí)題
一、填空題
1.YARN提供的調(diào)度器策略有FIFOScheduler(FIFO調(diào)度器)、CapacityScheduler(容
量調(diào)度器)和FairScheduler(公平調(diào)度器).
2.YARN采用的體系架構(gòu)是主從結(jié)構(gòu),其中主節(jié)點是ResourceManager,從節(jié)點是
NodeManager。
3.ResourceManager的兩個重要組件是Scheduler和ApplicationsManager0
4.在NodeManager中封裝內(nèi)存、CPU、磁盤、網(wǎng)絡(luò)等資源的是Container。
二、簡答題
1.簡述共享集群模式的優(yōu)點。
答:
(1)資源利用率高
(2)運維成本低
(3)數(shù)據(jù)共享
2.簡述ApplicationMaster的主要作用。
答:
(1)為運行應(yīng)用向ResourceManager申請資源。
(2)在Job中對Task實現(xiàn)調(diào)度。
(3)與NodeManager通信以啟動或者停止任務(wù)。
(4)監(jiān)控所有任務(wù)的運行情況,并在任務(wù)失敗的情況下重新為任務(wù)申請資源以重啟任
務(wù)
3.簡述YARN的工作流程。
答:
(1)用戶編寫客戶端應(yīng)用程序,向YARN中提交應(yīng)用程序,其中包括ApplicationMaster
程序、啟動ApplicationMaster的命令、用戶程序等。
(2)ResourceManager接到客戶端應(yīng)用程序的請求,會為該應(yīng)用程序分配一個
Container,同時ResourceManager的ApplicationManager會與該容器所在的
NodeManager通信,要求它在這個Container中啟動一個ApplicationMaster。
(3)ApplicationMaster被創(chuàng)建后首先向ResourceManager注冊,這樣用戶可以直接通
過ResourceManager查看應(yīng)用程序的運行狀態(tài),然后它將為各人任務(wù)申請資源,并監(jiān)
控它的運行狀態(tài),直到運行結(jié)束,即重復(fù)步驟4?步驟7。
(4)ApplicationMaster采樂輪詢的方式,通過RPC協(xié)議向ResourceManager申請和
領(lǐng)取資源。
(5)一旦ApplicationMaster申請到資源,就會與該容器所在的NodeManager通信,
要求它啟動任務(wù)。
習(xí)題
一、填空題
1.MapReduce執(zhí)行過程中,數(shù)據(jù)都是以key.汕&的形式進(jìn)行傳遞的。
2.整個MapReduce作業(yè)的生命周期是由A—plicaiionMasier來的.
3.整個MapReduce作業(yè)的資源分配是由ResourceManager來菅理的,
二、簡答題
1.簡述MapReduce的執(zhí)行過程。
答:在map階段,系統(tǒng)會將數(shù)據(jù)拆分成若干個“分片"(split),分片完成后,再將這些"分片"
數(shù)據(jù)以鍵-值方式傳遞給m叩進(jìn)行處理,m叩和reduce都以鍵-值形式作為輸入和輸出。作為map
端的輸入,默認(rèn)情況下,鍵是字符的位移,值是當(dāng)前行的數(shù)據(jù);此鍵-值對會作為參數(shù)被陸續(xù)傳
遞給m叩端的處理程序,直到數(shù)據(jù)全部傳遞完成。imp方法產(chǎn)生輸出時,經(jīng)過分區(qū)和排序后將
其寫入磁盤。
在reduce端的,reduce端會通過多個復(fù)制線程去"拉取"不同imp節(jié)點輸出的數(shù)據(jù)文件,并
對這些數(shù)據(jù)文件進(jìn)行排序和合并,合并之后的文件被傳入reduce方法中/educe方法執(zhí)行后,數(shù)
據(jù)將被輸出到文件系統(tǒng),通常是HDFS。
2.簡述shuffle過程。
答:(1)m叩端
當(dāng)m叩任務(wù)產(chǎn)生輸出時,基于效率的考慮,輸出數(shù)據(jù)不會直接寫到磁盤上,而是先寫入一
個緩沖區(qū)中,此緩沖區(qū)默認(rèn)大小為100MB,當(dāng)寫入的數(shù)據(jù)達(dá)到緩沖區(qū)的閾值(默認(rèn)為80%)時,
會將緩沖區(qū)中的轆溢寫(spill)到磁盤,生成一個文件,在寫入磁盤文件之前,會對這部分?jǐn)?shù)
據(jù)進(jìn)行分區(qū),然后對每個分區(qū)中的數(shù)據(jù)按鍵進(jìn)行排序,然后寫入磁盤中。隨著map任務(wù)的執(zhí)行,
可能會產(chǎn)生多個溢寫文件,這些文件在任務(wù)結(jié)束執(zhí)行前,會合并為一個已分區(qū)且每個分區(qū)都已排
序的完整的文件,并保存在本地的磁盤中。
(2)reduce端
reduce端并不會等待所有map任務(wù)結(jié)束再去獲取map端輸出的數(shù)據(jù),induce端的T線程會定
期詢問ApplicationMaster,一旦有m叩任務(wù)結(jié)束rreduce端就開始復(fù)制糊g。reduce會啟動若干復(fù)制
線程以并行M方式從各個m叩節(jié)點復(fù)制數(shù)據(jù)。reduce節(jié)點通常不會復(fù)制map節(jié)點整個的輸出文件,
而是只復(fù)制屬于自己的分區(qū)幡,復(fù)制完成所有map的轆后,會將各部分轆再次進(jìn)行合并,合
并前會3行必要K腓序,以彳稱勺完整性。
3.簡述本地化的含義。
答:m叩任務(wù)有本地化的局限,意思是m叩任務(wù)一般情況下都會運行在分片所在的節(jié)點上,
這樣的好處是可以不用跨節(jié)點傳輸數(shù)據(jù),從而大大提高了程序運行效率。
4.簡述數(shù)據(jù)分片過程。
答:在m叩階段,系統(tǒng)會將數(shù)據(jù)拆分成若干個“分片”(split),這里所說的“分片"只是邏輯上
的切分,并非真正物理上的切分,每個分片的大小默認(rèn)就是一個塊的大小。例如,假設(shè)初始設(shè)定
一個塊的大小為128MB,如果有兩個文件,一個50MB,一個150MB,則一共會被劃分成3個
分片,50MB的劃分成一個,150MB劃分成兩個,分別是128MB和22MB。
5.簡述YARN的MapReduce的資源分配過程。
答:當(dāng)MapReduce作業(yè)啟動后,會通知YARN,并由YARN的ResourccManager在
NodeManager的管理下分配一個容器(Container),然后在這個容器中啟動ApplicationMaster進(jìn)
程。MapReduce作業(yè)的ApplicationMaster是一個Java程序,它的主類是MRAppMastero
ApplicationMaster啟動后,首先會做一定的初始工作,然后會分析M叩Reduce作業(yè)的規(guī)模,
如果規(guī)模足夠大,則再次向ResourceManager請求容器用于map和reduce任務(wù)的執(zhí)行。對于imp
任務(wù),根據(jù)數(shù)據(jù)本地化的要求,會盡可能地將容器分配到數(shù)據(jù)所在節(jié)點,而reduce任務(wù)則不會
考慮。默認(rèn)情況下,每個m叩和reduce任務(wù)都被分配了1024MB的內(nèi)存和一個虛擬CPU內(nèi)核,
容器啟動后,會拉取任務(wù)所需的相關(guān)的配置信息、打包好的MapReduce的JAR文件以及來自分
布式緩存的文件到當(dāng)前節(jié)點,然后開始運行m叩或reduce任務(wù)。
6.簡述InputFormat和OutputFormat的作用。
答:⑴InputFormat負(fù)責(zé)創(chuàng)建輸入分片并將它們分割成記錄
(2)OutputFormat主要用于描述輸出數(shù)據(jù)的格式,它能夠?qū)⒂脩籼峁┑?/p>
key/value對
寫入特定格式的文件中
習(xí)題
一、選擇題
1.Writable接口中進(jìn)行序列化寫操作的方法為(A\
A.writeB.readFieldsC.writeFieldsD.read
2.SequenceFile.Writer完成新記錄的添加的方法為(C\
A.writeB.newC.appendD.add
二、簡答題
列舉JavaJang.String和Text類型的區(qū)別。
答:(1)Text對象的charAt方法返回的是當(dāng)前位置字符對應(yīng)的Unicode編碼的位置,String
對象返回的是當(dāng)前位置對應(yīng)的字符(char類型X
三、編程題
實現(xiàn)自定義序列化類,要求該類可以實現(xiàn)以下數(shù)據(jù)的序列化。
編號姓名年齡
StringStringByte
publicclassPeopleimplementsWritable{
privateStringid;
privateStringname;
privatebyteage;
?Override
publicvoidreadFields(Datalnputin)throwslOException{
id=in.readUTF();
name=in.readUTF();
age=in.readByte();
)
?Override
publicvoidwrite(DataOutputout)throwslOException{
out.write(id.getBytes());
out.write(name.getBytesQ);
out.write(age);
)
習(xí)題
一、選擇題
1.Hadoop3.x是基于(C)版本的JDK進(jìn)行編譯的。
A.JDK1.6B.JDK1.7C.JDK1.8D.JDK1.9
2.Hadoop2.x版本中HDFS默認(rèn)的NameNoderpc監(jiān)聽端口號是(B),Hadoop3.x中
將此默認(rèn)端口號改為了(BI
A.90009820B.80209820C.500708020D.5001050070
3.Hadoop的NameNoderpc監(jiān)聽端口可以在配置文件(C)中進(jìn)行配置。
A.mapred-site.xmlB.hdfs-site.xml
C.core-site.xmlD.hadoop-env.sh
4.以下不屬于Hadoop3.x新特性的是(D工
A.引入了EC技術(shù)B.JDK進(jìn)行了升級
C.實現(xiàn)了DataNode內(nèi)部負(fù)責(zé)均衡D.實現(xiàn)了HA集群
二、填空題
1.EC技術(shù)的全稱昂ErasureCoding.星HadoopHDFS3.x版本以卜新增的功能,
2.在較老版本的Hadoop集群中,NameNodeBHDFS集群中的單點故障。每個集群只有一
個NameNode,并且如果該計算機或進(jìn)程不可用,則整個集群將不可用。
3.Hadoop2.x版本中HDFS默認(rèn)的NameNodeHTTPUI端口號是50070,Hadoop3.x版本
中將此默認(rèn)端口號改為了9870o
三、簡答題
1.Hadoop3.x相比Hadoop2.x都有哪些新的特性?
答:(1)Hadoop2.x版本是基于JDK1.7進(jìn)行編譯的,而Hadoop3.x所有的HadoopJARs都是
針對JDK1.8編譯的。
(2)HDFS3.x很多改進(jìn)采用了EC技術(shù),且支持?jǐn)?shù)據(jù)的擦除編碼
(3)Hadoop3.x弓|入了YARNTimelineService(YARN時間軸服務(wù))v.2,創(chuàng)建v.2是為了應(yīng)
對'?」的兩個主要挑戰(zhàn)提高時間軸服務(wù)的可伸縮性和可靠性、通過引入流和聚合來增強可用性。
(4)在Hadoop3中允許用戶運行多個備用的NameNode,
(5)DataNode內(nèi)部負(fù)載均衡
(6)端口號的改變
(7)Shell腳本重寫
(8)GPU和FPGA支持
2.Hadoop3.x支持的NameNode和傳統(tǒng)的HadoopHA架構(gòu)相比有什么優(yōu)勢?
答:在Hadoop3中允許用戶運行多個備用的NameNode
3.Hadoop3.x的DataNode內(nèi)部負(fù)載均衡功能如何使用?
答:Hadoop3.x通過新的內(nèi)部DataNode平衡功能來處理內(nèi)部負(fù)載均衡,具體是通過
HDFSDiskBalancerCLI(HDFS磁盤平衡命令行接口)來實現(xiàn)的,實現(xiàn)DiskBalancer功能,首
先需要創(chuàng)建操作計劃,然后在DataNode上執(zhí)行該計劃。操作計劃通常是由一組語句組成的,計
劃中描述兩個磁盤之間應(yīng)移動多少數(shù)據(jù)。使用磁盤平衡功能前應(yīng)該注意在默認(rèn)情況下,集群上未
啟用磁盤平衡器。要啟用磁盤平衡功能,必須在hdfs-site.xml配置文件中將
dfs.disk.balancer.enabled設(shè)置為true.
習(xí)題
一、填空題
1.ClouderaManager的主要組件包括Server、AgentManagement、Database、
ClouderaRepository和Clients,
2.ClouderaManager提供的管理功能有批量自動化部署節(jié)點、可視化的參數(shù)配置、智能
參數(shù)驗證以及優(yōu)化和權(quán)限管理.
3.ClouderaManager提供的監(jiān)控功能有服務(wù)監(jiān)控、主機監(jiān)控、行為監(jiān)控、事件活動、報警
和日志和報告.
二、簡答題
1.簡述ClouderaManager的主要特點。
答:
(1)大數(shù)據(jù)處理相關(guān)服務(wù)安裝過程自動化,部署時間從幾周縮短到幾分鐘。
(2)提供集群范圍內(nèi)的主機和正在運行的服務(wù)的實時視圖。
(3)提供了單個中央控制臺,方便在整個集群中進(jìn)行配置更改。
(4)整合了各種報告和診斷工具,可以優(yōu)化集群的性能和利用率,提高服務(wù)質(zhì)量,提高合規(guī)
性并降低管理成本。
2.分別簡述service和serviceinstance的概念。
答:Service(服務(wù))是ClouderaManager中的托管功能類別,有時也被稱為服務(wù)類型,
這些服務(wù)運行在集群中,可能是分布式的,也可能是單節(jié)點的,如MapReduce、HDFS%YARN
和Spark.
ServiceInstance(服務(wù)實例)即在ClouderaManager集群中運行的服務(wù)的實例。
3.分別簡述role、roleinstance和rolegroup的概念。
Role(角色)是指service中的一類功能,有時也被稱為角色類型。例如,HDFS服務(wù)中的角
色有NameNode、SecondaryNameNode.DataNode和Balancer,
RoleInstance(角色實例)是指ClouderaManager中,在主機上運行的角色的實例,它通常
會映射到JUNIX進(jìn)程中,我們可以通過jps命令對其進(jìn)行查看。
在ClouderaManager中,RoleGroup(角色組)是指角色實例的一組配置屬性,這是一種將
配置分配給一組角色實例的機制。
三、上機題
1?根據(jù)9.4節(jié),完成ClodueraManager和CDH的離線部署,搭建CDH集群環(huán)境。
答:見章節(jié)內(nèi)容
2.在ClouderaManager管理菜單中啟動HDFSHA和YARNHA。
答:見章節(jié)內(nèi)容
習(xí)題
一、填空題
1.AvroSchema的基本類型中表示空值的是_null,表示8位無符號字節(jié)序列的是
bytes
2.AvroSchema的復(fù)雜類型中record類型定義record名稱的屬性是_皿型—,限定名稱的屬
件是namesDace??
3.定義AvroSchema類型的屬性是type,定義JSON數(shù)組的屬性是fields0
二、簡答題
1.簡述ApacheAvro的主要功能。
答:(1)豐富的數(shù)據(jù)結(jié)構(gòu)。
(2)一種緊湊、快速的二進(jìn)制數(shù)據(jù)格式。
(3)容器文件,用于存儲持久性數(shù)據(jù)。
(4)遠(yuǎn)程過程調(diào)用。
(5)與動態(tài)語言的簡單集成。讀取或?qū)懭霐?shù)據(jù)文件,使用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省南通市如皋市2025屆高三第一次適應(yīng)性考試(1.5模)數(shù)學(xué)試題(解析版)
- 智慧環(huán)衛(wèi)大數(shù)據(jù)一體化管理平臺設(shè)計方案智慧環(huán)衛(wèi)信息化管控平臺解決方案
- (二模)晉中市2025年3月高考適應(yīng)性訓(xùn)練考試 生物試卷(含A+B卷答案詳解)
- 5.3 凸透鏡成像的規(guī)律 說課稿 2025年初中人教版物理八年級上冊
- 暑期師德心得體會
- 四川省攀枝花市鹽邊縣2024-2025學(xué)年九年級上學(xué)期1月期末數(shù)學(xué)試題(原卷版+解析版)
- 西站框構(gòu)中橋施工方案 投標(biāo)方案(技術(shù)方案)
- 交通行業(yè)智能交通信號燈智能運維與數(shù)據(jù)分析方案
- 移動支付技術(shù)與其應(yīng)用模擬試題及答案
- 項目延期原因說明書
- 2025年海南保亭縣事業(yè)單位招聘綜合歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 污水處理設(shè)施運維服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 2024年蘇州高博軟件技術(shù)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 2025年上半年江蘇省無錫瀚瀾水利科技限公司招聘7人易考易錯模擬試題(共500題)試卷后附參考答案
- 我的家鄉(xiāng)衢州
- DB13-T2355-2016蒸壓加氣混凝土砌塊專用砂漿
- 【課件】時代與變革-為人生而藝術(shù) 課件高中美術(shù)人美版(2019)美術(shù)鑒賞
- DB44∕T 876-2011 物業(yè)服務(wù) 會務(wù)服務(wù)規(guī)范
- 橫河氧量變送器標(biāo)定及檢修
- ArcGIS應(yīng)用基礎(chǔ)培訓(xùn)(共98張)
- 南京鼓樓區(qū)部編版五年級語文下冊第二單元教材分析
評論
0/150
提交評論