中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)_第1頁(yè)
中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)_第2頁(yè)
中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)_第3頁(yè)
中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)_第4頁(yè)
中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)編輯:2013-11-0341、線段的垂直平分線可看作及線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,則對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,則交點(diǎn)在對(duì)稱軸上45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,則這兩個(gè)圖形關(guān)于這條直線對(duì)稱46、勾股定理直角三角形兩直角邊a、b的平方及、等于斜邊c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,則這個(gè)三角形是直角三角形48、定理四邊形的內(nèi)角及等于360°49、四邊形的外角及等于360°50、多邊形內(nèi)角及定理n邊形的內(nèi)角的及等于(n-2)×180°51、推論任意多邊的外角及等于360°52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等54、推論夾在兩條平行線間的平行線段相等55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分56、平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角61、矩形性質(zhì)定理2矩形的對(duì)角線相等62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形63、矩形判定定理2對(duì)角線相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等65、菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形68、菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角71、定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的72、定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分73、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,則這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75、等腰梯形的兩條對(duì)角線相等76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77、對(duì)角線相等的梯形是等腰梯形78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,則在其他直線上截得的線段也相等79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)及底平行的直線,必平分另一腰80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)及另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底及的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,則ad=bc如果ad=bc,則a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,則(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),則(a+c+…+m)/(b+d+…+n)=a/b86、平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88、定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,則這條直線平行于三角形的第三邊89、平行于三角形的一邊,并且及其他兩邊相交的直線,所截得的三角形的三邊及原三角形三邊對(duì)應(yīng)成比例90、定理平行于三角形一邊的直線及其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形及原三角形相似91、相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形及原三角形相似93、判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)95、定理如果一個(gè)直角三角形的斜邊及一條直角邊及另一個(gè)直角三角形的斜邊及一條直角邊對(duì)應(yīng)成比例,則這兩個(gè)直角三角形相似96、性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比及對(duì)應(yīng)角平分線的比都等于相似比97、性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比98、性質(zhì)定理3相似三角形面積的比等于相似比的平方99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104、同圓或等圓的半徑相等105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓106、及已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線108、到兩條平行線距離相等的點(diǎn)的軌跡,是及這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧111、推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?、谙业拇怪逼椒志€經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條?、燮椒窒宜鶎?duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形114、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等則它們所對(duì)應(yīng)的其余各組量都相等116、定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半117、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑119、推論3如果三角形一邊上的中線等于這邊的一半,則這個(gè)三角形是直角三角形120、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角121、①直線L及⊙O相交d﹤r②直線L及⊙O相切d=r③直線L及⊙O相離d﹥r(jià)122、切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)125、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心126、切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心及這一點(diǎn)的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對(duì)邊的及相等128、弦切角定理弦切角等于它所夾的弧對(duì)的圓周角129、推論如果兩個(gè)弦切角所夾的弧相等,則這兩個(gè)弦切角也相等130、相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等131、推論如果弦及直徑垂直相交,則弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132、切割線定理從圓外一點(diǎn)引圓的切線及割線,切線長(zhǎng)是這點(diǎn)到割線及圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)133、推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線及圓的交點(diǎn)的兩條線段長(zhǎng)的積相等134、如果兩個(gè)圓相切,則切點(diǎn)一定在連心線上135、①兩圓外離d﹥R+r②兩圓外切d=R+r③兩圓相交R-r﹤d﹤R+r(R﹥r(jià))④兩圓內(nèi)切d=R-r(R﹥r(jià))⑤兩圓內(nèi)含d﹤R-r(R﹥r(jià))136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138、定理任何正多邊形都有一個(gè)外接圓及一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n140、定理正n邊形的半徑及邊心距把正n邊形分成2n個(gè)全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)142、正三角形面積√3a/4a表示邊長(zhǎng)143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的及應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144、弧長(zhǎng)計(jì)算公式:L=n兀R/180145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)三、常用數(shù)學(xué)公式公式分類公式表達(dá)式乘法及因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根及系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根b2-4ac<0注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根某些數(shù)列前n項(xiàng)及1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b2=a2+c2-2accosB注:角B是邊a及邊c的夾角四、基本方法1、配方法所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的及形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式及不等式、求函數(shù)的極值及解析式等方面都經(jīng)常用到它。2、因式分解法因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。3、換元法換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。4、判別式法及韋達(dá)定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的及及積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。5、待定系數(shù)法在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。6、構(gòu)造法在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件及結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件及結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。7、反證法反證法是一種間接證法,它是先提出一個(gè)及命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到一定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)及窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個(gè)、一個(gè)也沒(méi)有;至少有n個(gè)、至多有(n一1)個(gè);至多有一個(gè)、至少有兩個(gè);唯一、至少有兩個(gè)。歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:及已知條件矛盾;及已知的公理、定義、定理、公式矛盾;及反設(shè)矛盾;自相矛盾。8、面積法平面幾何中講的面積公式以及由面積公式推出的及面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知及未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究及運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。10、客觀性題的解題方法選擇題是給出條件及結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)及基本技能,從而增大了試卷的容量及知識(shí)覆蓋面。填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力及計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法及技巧。下面通過(guò)實(shí)例介紹常用方法。(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過(guò)驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。(4)排除、篩選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。(6)分析法:直接通過(guò)對(duì)選擇題的條件及結(jié)論,作詳盡的分析、歸納及判斷,從而選出

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論