專題10方差和標(biāo)準(zhǔn)差(原卷版+解析)_第1頁
專題10方差和標(biāo)準(zhǔn)差(原卷版+解析)_第2頁
專題10方差和標(biāo)準(zhǔn)差(原卷版+解析)_第3頁
專題10方差和標(biāo)準(zhǔn)差(原卷版+解析)_第4頁
專題10方差和標(biāo)準(zhǔn)差(原卷版+解析)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年浙教版八年級(jí)數(shù)學(xué)下冊精選壓軸題培優(yōu)卷專題10方差和標(biāo)準(zhǔn)差_姓名:___________班級(jí):___________考號(hào):___________評(píng)卷人得分一、選擇題(每題2分,共20分)1.(本題2分)(2021春·浙江杭州·八年級(jí)杭州英特外國語學(xué)校??计谥校┮唤M數(shù)據(jù),,,,的平均數(shù)是4,方差是3,則,,,,的平均數(shù)和方差是(

).A.13、48 B.13、45 C.16、45 D.16、482.(本題2分)(2023秋·江蘇淮安·九年級(jí)統(tǒng)考期末)甲,乙,丙,丁四位同學(xué)本學(xué)期5次50米短跑成績的平均數(shù)(秒)及方差如下表所示.若選出一位成績較好且狀態(tài)穩(wěn)定的同學(xué)參加學(xué)校比賽,則應(yīng)選的同學(xué)是()甲乙丙丁777.57.50.450.20.20.45A.甲 B.乙 C.丙 D.丁3.(本題2分)(2022秋·山東煙臺(tái)·八年級(jí)統(tǒng)考期末)如圖是某班1~8月份全班同學(xué)每月的課外閱讀數(shù)量折線統(tǒng)計(jì)圖,下列說法正確的是(

)A.每月閱讀數(shù)量的中位數(shù)是32 B.每月閱讀數(shù)量的眾數(shù)是73C.每月閱讀數(shù)量的平均數(shù)是46 D.每月閱讀數(shù)量的極差是554.(本題2分)(2023·全國·八年級(jí)專題練習(xí))甲組數(shù)據(jù),,…,的方差是3,那么乙組數(shù)據(jù),,…,的方差是(

)A.3 B.9 C.27 D.無法確定5.(本題2分)(2022秋·全國·八年級(jí)專題練習(xí))有3個(gè)樣本數(shù)據(jù)如圖所示,樣本1、樣本2、樣本3的方差分別為,關(guān)于它們有下列幾種說法:①,②,③.其中正確的序號(hào)為()A.② B.③ C.②③ D.①②6.(本題2分)(2023春·八年級(jí)課時(shí)練習(xí))一組數(shù)據(jù)的方差為,將這組數(shù)據(jù)中每個(gè)數(shù)據(jù)都除以3,所得新數(shù)據(jù)的方差是(

)A. B.3 C. D.97.(本題2分)(2022秋·八年級(jí)課時(shí)練習(xí))已知一組數(shù)據(jù)的方差為,數(shù)據(jù)為:-1,0,3,5,x,那么x等于(

)A.-2或5.5 B.2或-5.5 C.4或11 D.-4或-118.(本題2分)(2022秋·山東棗莊·八年級(jí)滕州市西崗鎮(zhèn)西崗中學(xué)校考期末)在一次體育測試中,小明記錄了本班10名同學(xué)一分鐘跳繩的成績,如下表:成績150160170180190人數(shù)23221對于這10名學(xué)生的跳繩成績,小亮通過計(jì)算得到以下數(shù)據(jù):眾數(shù)150,中位數(shù)165,平均數(shù)160,方差是104,對于小亮計(jì)算的數(shù)據(jù),正確的個(gè)數(shù)是(

)A.1 B.2 C.3 D.49.(本題2分)(2023秋·河北石家莊·九年級(jí)石家莊市第十九中學(xué)??计谀榛I備班級(jí)里的慶“元旦”文藝晚會(huì),班長對全班同學(xué)愛吃哪幾種水果作了民意調(diào)查,最終買什么水果,該由調(diào)查數(shù)據(jù)的(

)決定A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差10.(本題2分)(2022秋·福建泉州·九年級(jí)福建省泉州第一中學(xué)校聯(lián)考期中)已知樣本數(shù)據(jù):3,2,1,7,2,下列說法不正確的是(

)A.平均數(shù)是3 B.中位數(shù)是1 C.眾數(shù)是2 D.方差是4.4評(píng)卷人得分二、填空題(每題2分,共16分)11.(本題2分)(2021春·浙江寧波·八年級(jí)??计谥校┮阎?個(gè)正數(shù)的標(biāo)準(zhǔn)差為2,則另一組數(shù)據(jù)的方差為____________.12.(本題2分)(2023秋·四川達(dá)州·八年級(jí)??计谀┮阎唤M數(shù)據(jù)的平均數(shù)是3,方差為,那么另一組數(shù)據(jù)的平均數(shù)和方差分別是_____,_____.13.(本題2分)(2022秋·全國·八年級(jí)專題練習(xí))某射擊運(yùn)動(dòng)隊(duì)進(jìn)行了五次射擊測試,甲、乙兩名選手的測試成績?nèi)鐖D所示,甲、乙兩選手成績的方差分別記為,則_______.(填“>”“<”或“=”)14.(本題2分)(2022·全國·八年級(jí)專題練習(xí))一組數(shù)據(jù)23,27,20,18,x,12,它們的中位數(shù)是21,則___________,已知一個(gè)樣本,0,2,x,3,它們的平均數(shù)是2,則這個(gè)樣本的標(biāo)準(zhǔn)差=_______.15.(本題2分)(2022秋·八年級(jí)課時(shí)練習(xí))甲、乙兩人進(jìn)行射擊測試,每人10次射擊的平均成績恰好都是9.4環(huán).方差分別是=0.90,=1.22.在本次射擊測試中,成績較穩(wěn)定的是__________________.16.(本題2分)(2022秋·八年級(jí)課時(shí)練習(xí))甲、乙二人五次數(shù)學(xué)考試成績?nèi)缦拢杭祝?5,84,82,88,86.乙:84,85,85,85,86.則甲、乙兩人成績比較穩(wěn)定的是______.17.(本題2分)(2022秋·九年級(jí)單元測試)已知一組數(shù)據(jù)a1,a2,a3,……,an的方差為3,則另一組數(shù)a1+1,a2+1,a3+1,……,an+1的方差為_____.18.(本題2分)(2022秋·八年級(jí)課時(shí)練習(xí))數(shù)據(jù),,,的平均數(shù)是4,方差是3,則數(shù)據(jù),,,的平均數(shù)和方差分別是_____________.評(píng)卷人得分三、解答題(共64分)19.(本題6分)(2023秋·云南昆明·九年級(jí)統(tǒng)考期末)近年來網(wǎng)約車給人們的出行帶來了便利,某學(xué)校數(shù)學(xué)興趣小組對甲、乙兩家網(wǎng)約車公司機(jī)月收入進(jìn)行抽樣調(diào)查,兩家公司分別抽取10個(gè)司機(jī)的月收入(單位:千元),調(diào)查后根統(tǒng)計(jì)結(jié)果繪制如下統(tǒng)計(jì)圖:根據(jù)以上信息,整理分析數(shù)據(jù)如下表:平均月收入中位數(shù)眾數(shù)方差甲公司666乙公司64請根據(jù)以上信息,解答下列問題:(1)補(bǔ)全條形統(tǒng)計(jì)圖;(2)上表中的數(shù)據(jù)被污染,請你求出這個(gè)數(shù)據(jù);(3)某人打算從兩家公司中選擇一家做網(wǎng)約車司機(jī),根據(jù)以上數(shù)據(jù),你建議他擇___________公司.(填“甲”或“乙”)20.(本題6分)(2023秋·江蘇揚(yáng)州·九年級(jí)統(tǒng)考期末)今年世界杯期間,為增強(qiáng)班級(jí)凝聚力,八年級(jí)6班開展了小組趣味足球比賽,全班分為5個(gè)小組開展點(diǎn)球大戰(zhàn),班主任王老師擔(dān)任守門員,下面分別為五個(gè)小組進(jìn)球的個(gè)數(shù):5,8,10,7,.若已知該五個(gè)小組的進(jìn)球個(gè)數(shù)平均數(shù)為8,請求出的值,并直接寫出該五個(gè)小組進(jìn)球個(gè)數(shù)的中位數(shù)和方差.21.(本題6分)(2021春·浙江杭州·八年級(jí)??计谥校┌耍?)班為了組隊(duì)參加學(xué)校舉行的“五水共治”知識(shí)競賽,在班里選取了若干名學(xué)生,分成人數(shù)相同的甲、乙兩組,進(jìn)行了四次“五水共治”模擬競賽,將成績優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖,回答下列問題:(1)求第三次模擬競賽成績的優(yōu)秀率和乙組在第四次模擬競賽中成績優(yōu)秀的人數(shù).(2)已求得甲組成績優(yōu)秀人數(shù)的平均數(shù),方差,請通過計(jì)算說明,哪一組成績優(yōu)秀的人數(shù)較穩(wěn)定?22.(本題6分)(2023秋·河北保定·八年級(jí)統(tǒng)考期末)甲、乙兩名隊(duì)員練習(xí)射擊,每次射擊的環(huán)數(shù)為整數(shù),兩人各射擊10次,其成績分別繪制成如圖1所示的條形統(tǒng)計(jì)圖和如圖2所示的折線統(tǒng)計(jì)圖,兩幅圖均有部分被污染.將兩名隊(duì)員10次的成績整理后,得到下表:姓名平均數(shù)中位數(shù)眾數(shù)方差甲a7b1.8乙7c84.2請根據(jù)圖表信息回答:(1)你認(rèn)為__________隊(duì)員的發(fā)揮更穩(wěn)定,理由是____________________.(2)__________,__________,__________;(3)乙隊(duì)員補(bǔ)射一次后,成績?yōu)閙環(huán),發(fā)現(xiàn)他11次射箭成績的中位數(shù)比c小0.5,則m的最大值為__________.23.(本題6分)(2022秋·陜西西安·八年級(jí)校考階段練習(xí))某校舉辦國學(xué)知識(shí)競賽,設(shè)定滿分10分,學(xué)生得分均為整數(shù).在初賽中,甲、乙兩組(每組10人)學(xué)生成績?nèi)缦拢▎挝唬悍郑┘捉M:5,6,6,6,6,6,7,9,9,10.

乙組:5,6,6,6,7,7,7,7,9,10.組別平均數(shù)中位數(shù)眾數(shù)方差甲組7a63.76乙組b7c(1)以上成績統(tǒng)計(jì)分析表中______,______,______;(2)小明同學(xué)說:“這次競賽我得了7分,在我們小組中屬中游略偏上!”觀察上面表格判斷,小明可能是______組的學(xué)生;(3)從平均數(shù)和方差看,若從甲乙兩組學(xué)生中選擇一個(gè)組參加決賽,應(yīng)選哪個(gè)組?并說明理由.24.(本題6分)(2023秋·河北保定·八年級(jí)??计谀┍本┒瑠W會(huì)的成功舉辦掀起了全民“冬奧熱”,某校組織全校七、八年級(jí)學(xué)生舉行了“冬奧知識(shí)”競賽,現(xiàn)分別在七、八兩個(gè)年級(jí)中各隨機(jī)抽取名學(xué)生,統(tǒng)計(jì)這部分學(xué)生的競賽成績,相關(guān)數(shù)據(jù)統(tǒng)計(jì)整理如下:【收集數(shù)據(jù)】七年級(jí)名同學(xué)測試成績統(tǒng)計(jì)如下:八年級(jí)名同學(xué)測試成績統(tǒng)計(jì)如下:【整理數(shù)據(jù)】兩組數(shù)據(jù)各分?jǐn)?shù)段,如下表所示:成績七年級(jí)八年級(jí)【分析數(shù)據(jù)】兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:平均數(shù)中位數(shù)眾數(shù)方差七年級(jí)八年級(jí)【問題解決】根據(jù)以上信息,解答下列問題:(1)填空:,,;(2)求七年級(jí)同學(xué)成績的方差,試估計(jì)哪個(gè)年級(jí)的競賽成績更整齊?(3)按照比賽規(guī)定分及其以上為優(yōu)秀,若該校七年級(jí)學(xué)生共人,八年級(jí)學(xué)生共人,請估計(jì)這兩個(gè)年級(jí)競賽成績達(dá)到優(yōu)秀學(xué)生的總?cè)藬?shù).(4)該校想讓一半以上的學(xué)生得到分及以上,你認(rèn)為該校七、八年級(jí)中哪個(gè)年級(jí)學(xué)生知識(shí)競賽成績更好?請說明理由25.(本題6分)(2023秋·山東泰安·八年級(jí)??计谀┪沂心持袑W(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.平均分分中位數(shù)分眾數(shù)分方差()初中部高中部(1)根據(jù)圖示計(jì)算出、、的值;(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績較好?(3)計(jì)算初中代表隊(duì)決賽成績的方差,并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.26.(本題6分)(2022秋·河南鄭州·八年級(jí)??计谀┠承榱肆私馄吣昙?jí)600名同學(xué)對防疫知識(shí)的掌握情況,對他們進(jìn)行了防疫知識(shí)測試,現(xiàn)隨機(jī)抽取甲、乙兩班各15名同學(xué)的測試成績進(jìn)行整理分析,過程如下:【收集數(shù)據(jù)】甲班15名學(xué)生測試成績分別為:78,83,89,97,98,85,100,94,87,90,93,92,99,95,100乙班15名學(xué)生測試成績中的成績?nèi)缦拢?1,92,94,90,93【整理數(shù)據(jù)】班級(jí)甲11346乙12354[分析數(shù)據(jù)]班級(jí)平均數(shù)眾數(shù)中位數(shù)方差甲92a9341.7乙9087b50.2[應(yīng)用數(shù)據(jù)](1)根據(jù)以上信息,可以求出:______分,______分;(2)若規(guī)定測試成績90分及其以上為優(yōu)秀,請估計(jì)參加防疫知識(shí)測試的600名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生共有多少人;(3)根據(jù)以上數(shù)據(jù),你認(rèn)為哪個(gè)班的學(xué)生防疫測試的整體成績較好?請說明理由(寫出一條理由即可).27.(本題8分)(2023·全國·八年級(jí)專題練習(xí))某農(nóng)科所甲、乙試驗(yàn)田各有水稻稻穗3萬個(gè),為了考察水稻穗長的情況,于同一天在這兩塊試驗(yàn)田里分別隨機(jī)抽取了50個(gè)稻穗進(jìn)行測量,獲得了它們的長度x(單位:),并對數(shù)據(jù)(穗長)進(jìn)行了整理、描述和分析.下面給出了部分信息.a(chǎn).甲試驗(yàn)田穗長的頻數(shù)分布統(tǒng)計(jì)表如表1所示(不完整):b.乙試驗(yàn)田穗長的頻數(shù)分布直方圖如圖所示:甲試驗(yàn)田穗長頻數(shù)分布表(表1)分組/頻數(shù)頻率49nm102合計(jì)50c.乙試驗(yàn)田穗長在這一組的是:d.甲、乙試驗(yàn)田穗長的平均數(shù)、中位數(shù)、眾數(shù)、方差如下(表2):試驗(yàn)田平均數(shù)中位數(shù)眾數(shù)方差甲乙根據(jù)以上信息,回答下列問題:(1)表1中的值為____,的值為____;(2)表2中的值為____;(3)在此次考察中,穗長為的稻穗,穗長排名(從長到短排序)更靠前的試驗(yàn)田是____;稻穗生長(長度)較穩(wěn)定的試驗(yàn)田是____;A.甲

B.乙

C.無法推斷(4)若穗長在范圍內(nèi)的稻穗為“良好”,請估計(jì)甲試驗(yàn)田所有“良好”的水稻約為多少萬個(gè)?28.(本題8分)(2023·全國·八年級(jí)專題練習(xí))2022年4月16日9時(shí)56分,神舟十三號(hào)載人飛船返回艙在東風(fēng)著陸場成功著落,神舟十三號(hào)載人飛行任務(wù)取得圓滿成功,中國航天又達(dá)到了一個(gè)新的高度.某校為了了解本校學(xué)生對航天科技的關(guān)注程度,對八、九年級(jí)學(xué)生進(jìn)行了航天科普知識(shí)競賽(百分制),并從其中分別隨機(jī)抽取了20名學(xué)生的測試成績,整理、描述和分析如下:(成績得分用x表示,共分成四組:A.;B.;C.;D.)其中,八年級(jí)20名學(xué)生的成績是:96,80,96,91,99,96,90,100,89,82,85,96,87,96,84,81,90,82,86,94.九年級(jí)20名學(xué)生的成績在C組中的數(shù)據(jù)是:90,91,92,92,93,94.八、九年級(jí)抽取的學(xué)生競賽成績統(tǒng)計(jì)表年級(jí)平均數(shù)中位數(shù)眾數(shù)方差八年級(jí)9090b38.7九年級(jí)90c10038.1根據(jù)以上信息,解答下列問題:(1)直接寫出上述a、b、c的值:a=,b=,c=;(2)你認(rèn)為這次比賽中哪個(gè)年級(jí)的競賽成績更好,為什么?(3)若該校九年級(jí)共1400人參加了此次航天科普知識(shí)競賽活動(dòng),估計(jì)參加此次活動(dòng)成績優(yōu)秀()的九年級(jí)學(xué)生人數(shù).2022-2023學(xué)年浙教版八年級(jí)數(shù)學(xué)下冊精選壓軸題培優(yōu)卷專題10方差和標(biāo)準(zhǔn)差姓名:___________班級(jí):___________考號(hào):___________評(píng)卷人得分一、選擇題(每題2分,共20分)1.(本題2分)(2021春·浙江杭州·八年級(jí)杭州英特外國語學(xué)校??计谥校┮唤M數(shù)據(jù),,,,的平均數(shù)是4,方差是3,則,,,,的平均數(shù)和方差是(

).A.13、48 B.13、45 C.16、45 D.16、48【答案】A【思路點(diǎn)撥】根據(jù)方差和平均數(shù)的變化規(guī)律可得:數(shù)據(jù),,,,的平均數(shù)是,方差是,再進(jìn)行計(jì)算即可.【規(guī)范解答】解:∵數(shù)據(jù),,,,的平均數(shù)是4,∴另一組數(shù)據(jù),,,,的平均數(shù)是;∵數(shù)據(jù),,,,的方差是3,∴另一組數(shù)據(jù),,,,的方差是,∴另一組數(shù)據(jù),,,,的方差是48;故選:A.【考點(diǎn)評(píng)析】本題考查了方差和平均數(shù):關(guān)鍵是掌握方差和平均數(shù)的變化規(guī)律;一般地設(shè)個(gè)數(shù)據(jù),,,…,的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.2.(本題2分)(2023秋·江蘇淮安·九年級(jí)統(tǒng)考期末)甲,乙,丙,丁四位同學(xué)本學(xué)期5次50米短跑成績的平均數(shù)(秒)及方差如下表所示.若選出一位成績較好且狀態(tài)穩(wěn)定的同學(xué)參加學(xué)校比賽,則應(yīng)選的同學(xué)是()甲乙丙丁777.57.50.450.20.20.45A.甲 B.乙 C.丙 D.丁【答案】B【思路點(diǎn)撥】先根據(jù)平均成績得到甲、乙二人成績好于丙、丁成績,再根據(jù)方差得到乙同學(xué)的成績比甲同學(xué)更穩(wěn)定,問題得解.【規(guī)范解答】解:∵∴從平均成績看,甲、乙二人成績好于丙、丁成績;∵∴乙同學(xué)的成績比甲同學(xué)更穩(wěn)定,∴應(yīng)選的同學(xué)是乙.故選:B.【考點(diǎn)評(píng)析】本題考查了平均數(shù)和方差,平均數(shù)反應(yīng)了一組數(shù)據(jù)的集中趨勢,方差反應(yīng)了一組數(shù)據(jù)的離散程度,一組數(shù)據(jù)的方差越小,則這組數(shù)據(jù)的更穩(wěn)定,理解平均數(shù)和方差的意義是解題關(guān)鍵.3.(本題2分)(2022秋·山東煙臺(tái)·八年級(jí)統(tǒng)考期末)如圖是某班1~8月份全班同學(xué)每月的課外閱讀數(shù)量折線統(tǒng)計(jì)圖,下列說法正確的是(

)A.每月閱讀數(shù)量的中位數(shù)是32 B.每月閱讀數(shù)量的眾數(shù)是73C.每月閱讀數(shù)量的平均數(shù)是46 D.每月閱讀數(shù)量的極差是55【答案】D【思路點(diǎn)撥】根據(jù)中位數(shù)的定義,可判斷A;根據(jù)眾數(shù)的定義,可判斷B;根據(jù)平均數(shù)的計(jì)算方法,可判斷C;根據(jù)極差的定義,可判斷D.【規(guī)范解答】解:A.將8個(gè)數(shù)據(jù)由小到大排列為:18,26,32,48,48,60,65,73,中位數(shù)是,故本選項(xiàng)說法錯(cuò)誤,不符合題意;B.出現(xiàn)次數(shù)最多的是48,眾數(shù)是48,故本選項(xiàng)說法錯(cuò)誤,不符合題意;C.該班學(xué)生去年月份全班同學(xué)每月的課外閱讀數(shù)量的平均數(shù)是,故本選項(xiàng)說法錯(cuò)誤,不符合題意;D.每月閱讀數(shù)量的極差是,故本選項(xiàng)說法正確,符合題意.故選:D.【考點(diǎn)評(píng)析】本題考查了折線統(tǒng)計(jì)圖,讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.折線統(tǒng)計(jì)圖表示的是事物的變化情況.也考查了極差、平均數(shù)、眾數(shù)與中位數(shù).4.(本題2分)(2023·全國·八年級(jí)專題練習(xí))甲組數(shù)據(jù),,…,的方差是3,那么乙組數(shù)據(jù),,…,的方差是(

)A.3 B.9 C.27 D.無法確定【答案】C【思路點(diǎn)撥】根據(jù)方差的定義即可進(jìn)行解答.【規(guī)范解答】解:設(shè)甲組數(shù)據(jù)的平均數(shù)為,∴,∵,∴乙組數(shù)據(jù)的平均數(shù),,∴,故選:C.【考點(diǎn)評(píng)析】本題考查了方差的性質(zhì):當(dāng)一組數(shù)據(jù)的每一個(gè)數(shù)都乘以同一個(gè)數(shù)時(shí),方差變成這個(gè)數(shù)的平方倍.即如果一組數(shù)據(jù),,…,的方差是,那么另一組數(shù)據(jù),,…,的方差是.5.(本題2分)(2022秋·全國·八年級(jí)專題練習(xí))有3個(gè)樣本數(shù)據(jù)如圖所示,樣本1、樣本2、樣本3的方差分別為,關(guān)于它們有下列幾種說法:①,②,③.其中正確的序號(hào)為()A.② B.③ C.②③ D.①②【答案】D【思路點(diǎn)撥】分別計(jì)算出方差即可.【規(guī)范解答】解:樣本1的平均數(shù)為,,樣本2的平均數(shù)為,,樣本3的平均數(shù)為,,∴.故選:D.【考點(diǎn)評(píng)析】本題考查了方差,正確掌握方差的計(jì)算公式是關(guān)鍵.6.(本題2分)(2023春·八年級(jí)課時(shí)練習(xí))一組數(shù)據(jù)的方差為,將這組數(shù)據(jù)中每個(gè)數(shù)據(jù)都除以3,所得新數(shù)據(jù)的方差是(

)A. B.3 C. D.9【答案】C【思路點(diǎn)撥】本題主要考查的是方差的求法.解答此類問題,通常用x1,x2,…,xn表示出已知數(shù)據(jù)的平均數(shù)與方差,再根據(jù)題意用x1,x2,…,xn表示出新數(shù)據(jù)的平均數(shù)與方差,尋找新數(shù)據(jù)的平均數(shù)與原來數(shù)據(jù)平均數(shù)之間的關(guān)系.【規(guī)范解答】設(shè)原數(shù)據(jù)為x1,x2,…,xn,其平均數(shù)為,方差為s2.根據(jù)題意,得新數(shù)據(jù)為,,…,,其平均數(shù)為.根據(jù)方差的定義可知,新數(shù)據(jù)的方差為.故選C.【考點(diǎn)評(píng)析】本題考查平均數(shù)與方差,會(huì)分別利用方差和平均數(shù)的公式去表示方差和平均數(shù)是解題的關(guān)鍵.其次根據(jù)題意給代數(shù)式進(jìn)行等量變形也非常重要.7.(本題2分)(2022秋·八年級(jí)課時(shí)練習(xí))已知一組數(shù)據(jù)的方差為,數(shù)據(jù)為:-1,0,3,5,x,那么x等于(

)A.-2或5.5 B.2或-5.5 C.4或11 D.-4或-11【答案】A【思路點(diǎn)撥】根據(jù)平均數(shù)和方差的公式列出關(guān)于x,m的方程求解.【規(guī)范解答】解:設(shè)數(shù)據(jù)的平均數(shù)為m,則①,,整理得②,把①代入②,得:,化簡得解得:x=-2或5.5.故選A.【考點(diǎn)評(píng)析】本題主要考查的是方差公式,平均數(shù)公式,以及一元二次方程的解法,方程思想在初中數(shù)學(xué)的學(xué)習(xí)中極為重要,也是中考中的熱點(diǎn),本題思考問題的角度獨(dú)特,難度較大.8.(本題2分)(2022秋·山東棗莊·八年級(jí)滕州市西崗鎮(zhèn)西崗中學(xué)??计谀┰谝淮误w育測試中,小明記錄了本班10名同學(xué)一分鐘跳繩的成績,如下表:成績150160170180190人數(shù)23221對于這10名學(xué)生的跳繩成績,小亮通過計(jì)算得到以下數(shù)據(jù):眾數(shù)150,中位數(shù)165,平均數(shù)160,方差是104,對于小亮計(jì)算的數(shù)據(jù),正確的個(gè)數(shù)是(

)A.1 B.2 C.3 D.4【答案】A【思路點(diǎn)撥】分別求出平均數(shù)、中位數(shù)、眾數(shù)、方差進(jìn)行判斷即可解答.【規(guī)范解答】根據(jù)表格可知:這組數(shù)據(jù)中出現(xiàn)次數(shù)最多,則眾數(shù)為:,這組數(shù)據(jù)的中位數(shù)為:,這組數(shù)據(jù)的平均數(shù)為:,這組數(shù)據(jù)的方差為:=161,∴小亮計(jì)算的數(shù)據(jù),正確的個(gè)數(shù)是:故選:A.【考點(diǎn)評(píng)析】本題考查平均數(shù)、中位數(shù)、眾數(shù)、方差,熟知平均數(shù)、中位數(shù)、眾數(shù)、方差的計(jì)算方法,數(shù)據(jù)較大,正確計(jì)算是解答的關(guān)鍵.9.(本題2分)(2023秋·河北石家莊·九年級(jí)石家莊市第十九中學(xué)??计谀榛I備班級(jí)里的慶“元旦”文藝晚會(huì),班長對全班同學(xué)愛吃哪幾種水果作了民意調(diào)查,最終買什么水果,該由調(diào)查數(shù)據(jù)的(

)決定A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差【答案】C【思路點(diǎn)撥】班長最值得關(guān)注的應(yīng)該是哪種水果愛吃的人數(shù)最多,即眾數(shù).【規(guī)范解答】解:平均數(shù)、中位數(shù)、眾數(shù)是描述一組數(shù)據(jù)集中程度的統(tǒng)計(jì)量;既然是為籌備班級(jí)的初中畢業(yè)聯(lián)歡會(huì)做準(zhǔn)備,那么買的水果肯定是大多數(shù)人愛吃的才行,故最值得關(guān)注的是眾數(shù).故選:C.【考點(diǎn)評(píng)析】此題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.10.(本題2分)(2022秋·福建泉州·九年級(jí)福建省泉州第一中學(xué)校聯(lián)考期中)已知樣本數(shù)據(jù):3,2,1,7,2,下列說法不正確的是(

)A.平均數(shù)是3 B.中位數(shù)是1 C.眾數(shù)是2 D.方差是4.4【答案】B【思路點(diǎn)撥】根據(jù)平均數(shù)、中位數(shù)、眾數(shù)、方差的計(jì)算公式和定義分別對每一項(xiàng)進(jìn)行分析,即可得出答案.【規(guī)范解答】解:A.平均數(shù)為:,正確,故此選項(xiàng)不符合題意;B.把數(shù)據(jù)按從小到大排列為:1,2,2,3,7,中間的數(shù)是2,所以中位數(shù)為2,故中位數(shù)是1錯(cuò)誤,故此選項(xiàng)符合題意;C.2出現(xiàn)次數(shù)最多,故眾數(shù)為2,正確,故此選項(xiàng)不符合題意;D.方差為:,正確,故此選項(xiàng)不符合題意;故選:B.【考點(diǎn)評(píng)析】此題考查了平均數(shù)、中位數(shù)和眾數(shù)、方差,用到的知識(shí)點(diǎn):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù).一般地設(shè)n個(gè)數(shù)據(jù),,,…,的平均數(shù)為,則方差.評(píng)卷人得分二、填空題(每題2分,共16分)11.(本題2分)(2021春·浙江寧波·八年級(jí)校考期中)已知5個(gè)正數(shù)的標(biāo)準(zhǔn)差為2,則另一組數(shù)據(jù)的方差為____________.【答案】36【思路點(diǎn)撥】根據(jù)標(biāo)準(zhǔn)差求出5個(gè)正數(shù)的方差,再根據(jù)數(shù)據(jù)經(jīng)過變形后的方差是原來數(shù)據(jù)的方差的倍,進(jìn)行求解即可.【規(guī)范解答】解:∵5個(gè)正數(shù)的標(biāo)準(zhǔn)差為2,∴5個(gè)正數(shù)的方差為:,∴另一組數(shù)據(jù)的方差為:;故答案為:.【考點(diǎn)評(píng)析】本題考查方差.熟練掌握標(biāo)準(zhǔn)差是方差的算術(shù)平方根,以及一組數(shù)據(jù)經(jīng)過變形后的方差是原來數(shù)據(jù)的方差的倍,是解題的關(guān)鍵.12.(本題2分)(2023秋·四川達(dá)州·八年級(jí)??计谀┮阎唤M數(shù)據(jù)的平均數(shù)是3,方差為,那么另一組數(shù)據(jù)的平均數(shù)和方差分別是_____,_____.【答案】

7

3【思路點(diǎn)撥】根據(jù)一組數(shù)據(jù)的平均數(shù)是,方差為,根據(jù)數(shù)據(jù)經(jīng)過變形后,平均數(shù)變?yōu)椋讲钭優(yōu)?,進(jìn)行計(jì)算即可.【規(guī)范解答】解:∵數(shù)據(jù)的平均數(shù)是3,∴數(shù)據(jù)的平均數(shù)是;∵數(shù)據(jù)的方差為,∴數(shù)據(jù)的方差是;故答案為:7,3.【考點(diǎn)評(píng)析】本題考查平均數(shù)和方差.熟練掌握一組數(shù)據(jù)的平均數(shù)是,方差為,根據(jù)數(shù)據(jù)經(jīng)過變形后,平均數(shù)變?yōu)?,方差變?yōu)?,是解題的關(guān)鍵。13.(本題2分)(2022秋·全國·八年級(jí)專題練習(xí))某射擊運(yùn)動(dòng)隊(duì)進(jìn)行了五次射擊測試,甲、乙兩名選手的測試成績?nèi)鐖D所示,甲、乙兩選手成績的方差分別記為,則_______.(填“>”“<”或“=”)【答案】>【思路點(diǎn)撥】直接根據(jù)圖表數(shù)據(jù)的波動(dòng)大小進(jìn)行判斷即可.【規(guī)范解答】解:圖表數(shù)據(jù)可知,甲數(shù)據(jù)偏離平均數(shù)數(shù)據(jù)較大,乙數(shù)據(jù)偏離平均數(shù)數(shù)據(jù)較小,即甲的波動(dòng)性較大,即方差大,故答案為:>.【考點(diǎn)評(píng)析】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.14.(本題2分)(2022·全國·八年級(jí)專題練習(xí))一組數(shù)據(jù)23,27,20,18,x,12,它們的中位數(shù)是21,則___________,已知一個(gè)樣本,0,2,x,3,它們的平均數(shù)是2,則這個(gè)樣本的標(biāo)準(zhǔn)差=_______.【答案】

22

【思路點(diǎn)撥】(1)中位數(shù)是21,這組數(shù)據(jù)有6個(gè)數(shù),是偶數(shù),因此21是最中間的兩個(gè)數(shù)的平均數(shù),再把這些數(shù)從小到大排列,16,18,20都比中位數(shù)21小,所以x排在20后面,進(jìn)而求得x的值;(2)先根據(jù)平均數(shù)是2求出x的值,再根據(jù)標(biāo)準(zhǔn)差公式求解.【規(guī)范解答】解:(1)根據(jù)題意和中位數(shù)的定義,21是最中間的兩個(gè)數(shù)的平均數(shù),∵16,18,20都比中位數(shù)21小,∴x排在20后面,∵20與23的平均數(shù)大于21,∴x排在23前面,∴該組數(shù)據(jù)從小到大排列為:12,18,20,x,23,27,∴,解得,故答案為:22;(2)∵樣本-1,0,2,x,3的平均數(shù)是2,∴,解得,∴,∴標(biāo)準(zhǔn)差為:.故答案為:.【考點(diǎn)評(píng)析】本題考查利用中位數(shù)、平均數(shù)求未知數(shù)據(jù)的值,以及計(jì)算方差,標(biāo)準(zhǔn)差等知識(shí)點(diǎn),熟練掌握中位數(shù)、平均數(shù)、方差,標(biāo)準(zhǔn)差的定義是解題的關(guān)鍵.15.(本題2分)(2022秋·八年級(jí)課時(shí)練習(xí))甲、乙兩人進(jìn)行射擊測試,每人10次射擊的平均成績恰好都是9.4環(huán).方差分別是=0.90,=1.22.在本次射擊測試中,成績較穩(wěn)定的是__________________.【答案】甲【思路點(diǎn)撥】根據(jù)方差的意義可作出判斷.【規(guī)范解答】解:∵=0.90,=1.22,∴,∴成績較穩(wěn)定的是甲.故答案為:甲.【考點(diǎn)評(píng)析】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.16.(本題2分)(2022秋·八年級(jí)課時(shí)練習(xí))甲、乙二人五次數(shù)學(xué)考試成績?nèi)缦拢杭祝?5,84,82,88,86.乙:84,85,85,85,86.則甲、乙兩人成績比較穩(wěn)定的是______.【答案】乙【思路點(diǎn)撥】判定穩(wěn)定性要使用方差,即比較甲和乙方差,方差小的較穩(wěn)定.【規(guī)范解答】設(shè)為甲的平均數(shù),則=85,則甲的方差

=4;設(shè)為乙的平均數(shù),則,則乙的方差;因?yàn)榧椎姆讲畲笥谝业姆讲?,所以乙的成績比較穩(wěn)定.故答案為乙.【考點(diǎn)評(píng)析】本題考查平均數(shù)、方差的應(yīng)用,需牢記其定義及計(jì)算公式.17.(本題2分)(2022秋·九年級(jí)單元測試)已知一組數(shù)據(jù)a1,a2,a3,……,an的方差為3,則另一組數(shù)a1+1,a2+1,a3+1,……,an+1的方差為_____.【答案】3【思路點(diǎn)撥】設(shè)數(shù)據(jù)a1,a2,a3,……,an的平均數(shù)為,則可求得a1+1,a2+1,a3+1,……,an+1的平均數(shù),根據(jù)數(shù)據(jù)a1,a2,a3,……,an的方差為3,即可求得另一組數(shù)據(jù)a1+1,a2+1,a3+1,……,an+1的方程.【規(guī)范解答】設(shè)數(shù)據(jù)a1,a2,a3,……,an的平均數(shù)為,即,則此組數(shù)據(jù)的方差為;∵a1+1,a2+1,a3+1,……,an+1的平均數(shù)為:,所以此數(shù)據(jù)的方差為:故答案為:3.【考點(diǎn)評(píng)析】本題考查了求一組數(shù)據(jù)的方差,已知一組數(shù)據(jù)的方差,則每個(gè)數(shù)據(jù)加上同一個(gè)常數(shù)后所得新數(shù)據(jù)的方差不變,平均數(shù)是原數(shù)據(jù)的平均數(shù)加上這個(gè)常數(shù),這實(shí)質(zhì)是方差與平均數(shù)的性質(zhì),熟練掌握平均數(shù)與方差的計(jì)算公式是解題的關(guān)鍵.18.(本題2分)(2022秋·八年級(jí)課時(shí)練習(xí))數(shù)據(jù),,,的平均數(shù)是4,方差是3,則數(shù)據(jù),,,的平均數(shù)和方差分別是_____________.【答案】41,3【規(guī)范解答】試題分析:根據(jù)題意可知原數(shù)組的平均數(shù)為,方差為=3,然后由題意可得新數(shù)據(jù)的平均數(shù)為,可求得方程為.故答案為:41,3.評(píng)卷人得分三、解答題(共64分)19.(本題6分)(2023秋·云南昆明·九年級(jí)統(tǒng)考期末)近年來網(wǎng)約車給人們的出行帶來了便利,某學(xué)校數(shù)學(xué)興趣小組對甲、乙兩家網(wǎng)約車公司機(jī)月收入進(jìn)行抽樣調(diào)查,兩家公司分別抽取10個(gè)司機(jī)的月收入(單位:千元),調(diào)查后根統(tǒng)計(jì)結(jié)果繪制如下統(tǒng)計(jì)圖:根據(jù)以上信息,整理分析數(shù)據(jù)如下表:平均月收入中位數(shù)眾數(shù)方差甲公司666乙公司64請根據(jù)以上信息,解答下列問題:(1)補(bǔ)全條形統(tǒng)計(jì)圖;(2)上表中的數(shù)據(jù)被污染,請你求出這個(gè)數(shù)據(jù);(3)某人打算從兩家公司中選擇一家做網(wǎng)約車司機(jī),根據(jù)以上數(shù)據(jù),你建議他擇___________公司.(填“甲”或“乙”)【答案】(1)見解析(2)(3)甲【思路點(diǎn)撥】(1)求出工資為9千元的人數(shù),再補(bǔ)全條形圖即可;(2)將乙公司的10個(gè)數(shù)據(jù)從小到大進(jìn)行排列,求出中間兩位數(shù)據(jù)的平均數(shù),即可得出結(jié)論;(3)根據(jù)平均數(shù)相同,方差越小,數(shù)據(jù)越穩(wěn)定,進(jìn)行選擇即可.【規(guī)范解答】(1)解:工資為千元的人數(shù)為:人;補(bǔ)全條形統(tǒng)計(jì)如圖所示;(2)解:乙公司10個(gè)司機(jī)月收入從小到大分別是4,4,4,4,4,5,5,9,9,12(單位:千元)∴乙公司的中位數(shù);(3)解:根據(jù)表格可知,甲乙兩個(gè)公司的平均月收入相同,甲公司的中位數(shù)和眾數(shù)比乙公司大,說明甲公司高工資段的人數(shù)較多,且甲公司的方差小于乙公司的方差,工資比較穩(wěn)定,建議選擇甲公司;故答案為:甲.【考點(diǎn)評(píng)析】本題考查統(tǒng)計(jì)圖,中位數(shù),以及利用方差作決策.從統(tǒng)計(jì)圖中有效的獲取信息,熟練掌握中位數(shù)的確定方法,以及方差越小,數(shù)據(jù)波動(dòng)越穩(wěn)定,是解題的關(guān)鍵.20.(本題6分)(2023秋·江蘇揚(yáng)州·九年級(jí)統(tǒng)考期末)今年世界杯期間,為增強(qiáng)班級(jí)凝聚力,八年級(jí)6班開展了小組趣味足球比賽,全班分為5個(gè)小組開展點(diǎn)球大戰(zhàn),班主任王老師擔(dān)任守門員,下面分別為五個(gè)小組進(jìn)球的個(gè)數(shù):5,8,10,7,.若已知該五個(gè)小組的進(jìn)球個(gè)數(shù)平均數(shù)為8,請求出的值,并直接寫出該五個(gè)小組進(jìn)球個(gè)數(shù)的中位數(shù)和方差.【答案】的值是10,該五個(gè)小組進(jìn)球個(gè)數(shù)的中位數(shù)是8,方差是【思路點(diǎn)撥】根據(jù)平均數(shù)列方程,解方程即可得到m的值,把數(shù)據(jù)從小到大排列后,即可求得中位數(shù),根據(jù)方差的定義求解即可.【規(guī)范解答】解:由題意得:,,這組數(shù)為5,7,8,10,10,這組數(shù)據(jù)的中位數(shù)是8,這組數(shù)據(jù)的方差是.【考點(diǎn)評(píng)析】此題主要考查了平均數(shù)、中位數(shù)、方差,熟練掌握求解方法是解題的關(guān)鍵.21.(本題6分)(2021春·浙江杭州·八年級(jí)??计谥校┌耍?)班為了組隊(duì)參加學(xué)校舉行的“五水共治”知識(shí)競賽,在班里選取了若干名學(xué)生,分成人數(shù)相同的甲、乙兩組,進(jìn)行了四次“五水共治”模擬競賽,將成績優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖的統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖,回答下列問題:(1)求第三次模擬競賽成績的優(yōu)秀率和乙組在第四次模擬競賽中成績優(yōu)秀的人數(shù).(2)已求得甲組成績優(yōu)秀人數(shù)的平均數(shù),方差,請通過計(jì)算說明,哪一組成績優(yōu)秀的人數(shù)較穩(wěn)定?【答案】(1),9(2)甲組績優(yōu)秀的人數(shù)較穩(wěn)定【思路點(diǎn)撥】(1)根據(jù)計(jì)算總?cè)藬?shù)人,根據(jù)計(jì)算優(yōu)秀總?cè)藬?shù),依次計(jì)算即可.(2)計(jì)算乙組優(yōu)秀人數(shù)的平均數(shù),方差,比較判斷即可.【規(guī)范解答】(1)根據(jù)題意,得參賽總?cè)藬?shù)為:人,∴第三次模擬競賽成績的優(yōu)秀率為;∵在第四次模擬競賽中成績優(yōu)秀的人數(shù)為人,甲組有8人,∴乙組在第四次模擬競賽中成績優(yōu)秀的人數(shù)為:17-8=9(人).(2)∵乙組在模擬競賽中成績優(yōu)秀的人數(shù)的平均數(shù)為,方差,∴,∴甲組績優(yōu)秀的人數(shù)較穩(wěn)定.【考點(diǎn)評(píng)析】本題考查了樣本容量的計(jì)算,平均數(shù),方差,熟練掌握平均數(shù),方差的計(jì)算,并靈活運(yùn)用決策是解題的關(guān)鍵.22.(本題6分)(2023秋·河北保定·八年級(jí)統(tǒng)考期末)甲、乙兩名隊(duì)員練習(xí)射擊,每次射擊的環(huán)數(shù)為整數(shù),兩人各射擊10次,其成績分別繪制成如圖1所示的條形統(tǒng)計(jì)圖和如圖2所示的折線統(tǒng)計(jì)圖,兩幅圖均有部分被污染.將兩名隊(duì)員10次的成績整理后,得到下表:姓名平均數(shù)中位數(shù)眾數(shù)方差甲a7b1.8乙7c84.2請根據(jù)圖表信息回答:(1)你認(rèn)為__________隊(duì)員的發(fā)揮更穩(wěn)定,理由是____________________.(2)__________,__________,__________;(3)乙隊(duì)員補(bǔ)射一次后,成績?yōu)閙環(huán),發(fā)現(xiàn)他11次射箭成績的中位數(shù)比c小0.5,則m的最大值為__________.【答案】(1)甲;方差越小穩(wěn)定性越好,而甲的方差小于乙的方差,所以甲隊(duì)員的發(fā)揮更穩(wěn)定(2)7,7,7.5(3)7【思路點(diǎn)撥】(1)根據(jù)方差的大小與穩(wěn)定性的大小的關(guān)系判斷即可;(2)根據(jù)條形統(tǒng)計(jì)圖確定成績?yōu)?環(huán)的次數(shù)為4,然后根據(jù)平均數(shù)的計(jì)算公式求解a值即可;觀察甲隊(duì)員成績環(huán)數(shù)出現(xiàn)次數(shù)最多的即為b值;根據(jù)折線統(tǒng)計(jì)圖以及平均數(shù)確定被污染的兩個(gè)數(shù)值的和為15,然后根據(jù)眾數(shù)為8確定被污染的兩個(gè)值,最后對乙的10次成績從大到小依次排序,求出第5和第6位數(shù)值的平均數(shù)即為c值;(3)根據(jù)題意確定乙隊(duì)員11次射箭成績的中位數(shù),然后根據(jù)中位數(shù)是成績依次排序中的第6位進(jìn)行判斷即可.【規(guī)范解答】(1)解:∵,∴甲隊(duì)員的發(fā)揮更穩(wěn)定,理由是方差越小穩(wěn)定性越好,而甲的方差小于乙的方差,所以甲隊(duì)員的發(fā)揮更穩(wěn)定.(2)解:由條形統(tǒng)計(jì)圖可得成績?yōu)?環(huán)的次數(shù)為(次),∴平均數(shù);且眾數(shù);由折線統(tǒng)計(jì)圖可得剩余兩次的成績和為,∵眾數(shù)為8,∴剩余兩次的成績?yōu)?和8,將乙的10次成績從大到小依次排序?yàn)椋嘀形粩?shù),∴.(3)解:由題意知,乙隊(duì)員11次射箭成績的中位數(shù)為,即乙的11次成績從大到小依次排序中第6次成績?yōu)?,∴,∴m的最大值為7.【考點(diǎn)評(píng)析】本題主要考查了統(tǒng)計(jì)圖、平均數(shù)、眾數(shù)、中位數(shù)以及方差等的知識(shí).解題的關(guān)鍵在于正確的處理統(tǒng)計(jì)圖中的信息以及平均數(shù)、眾數(shù)、中位數(shù)的求解.23.(本題6分)(2022秋·陜西西安·八年級(jí)??茧A段練習(xí))某校舉辦國學(xué)知識(shí)競賽,設(shè)定滿分10分,學(xué)生得分均為整數(shù).在初賽中,甲、乙兩組(每組10人)學(xué)生成績?nèi)缦拢▎挝唬悍郑┘捉M:5,6,6,6,6,6,7,9,9,10.

乙組:5,6,6,6,7,7,7,7,9,10.組別平均數(shù)中位數(shù)眾數(shù)方差甲組7a63.76乙組b7c(1)以上成績統(tǒng)計(jì)分析表中______,______,______;(2)小明同學(xué)說:“這次競賽我得了7分,在我們小組中屬中游略偏上!”觀察上面表格判斷,小明可能是______組的學(xué)生;(3)從平均數(shù)和方差看,若從甲乙兩組學(xué)生中選擇一個(gè)組參加決賽,應(yīng)選哪個(gè)組?并說明理由.【答案】(1)6,7,7(2)甲(3)乙組【思路點(diǎn)撥】(1)根據(jù)平均數(shù)、中位數(shù)和眾數(shù)的定義分別進(jìn)行解答即可得出答案;(2)根據(jù)中位數(shù)的意義即可得出答案;(3)根據(jù)平均數(shù)與方差的意義即可得出答案.【規(guī)范解答】(1)解:把甲組的成績從小到大排列后,中間兩個(gè)數(shù)的平均數(shù)是,則中位數(shù);,乙組學(xué)生成績中,數(shù)據(jù)7出現(xiàn)了四次,次數(shù)最多,所以眾數(shù).故答案為:6,7,7;(2)小明可能是甲組的學(xué)生,理由如下:因?yàn)榧捉M的中位數(shù)是6分,而小明得了7分,所以在小組中屬中游略偏上,故答案為:甲;(3)選乙組參加決賽.理由如下:,甲乙組學(xué)生平均數(shù)相等,而,乙組的成績比較穩(wěn)定,故選乙組參加決賽.【考點(diǎn)評(píng)析】本題考查了平均數(shù),中位數(shù),眾數(shù),方差,正確理解它們的含義是解題關(guān)鍵.24.(本題6分)(2023秋·河北保定·八年級(jí)??计谀┍本┒瑠W會(huì)的成功舉辦掀起了全民“冬奧熱”,某校組織全校七、八年級(jí)學(xué)生舉行了“冬奧知識(shí)”競賽,現(xiàn)分別在七、八兩個(gè)年級(jí)中各隨機(jī)抽取名學(xué)生,統(tǒng)計(jì)這部分學(xué)生的競賽成績,相關(guān)數(shù)據(jù)統(tǒng)計(jì)整理如下:【收集數(shù)據(jù)】七年級(jí)名同學(xué)測試成績統(tǒng)計(jì)如下:八年級(jí)名同學(xué)測試成績統(tǒng)計(jì)如下:【整理數(shù)據(jù)】兩組數(shù)據(jù)各分?jǐn)?shù)段,如下表所示:成績七年級(jí)八年級(jí)【分析數(shù)據(jù)】兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:平均數(shù)中位數(shù)眾數(shù)方差七年級(jí)八年級(jí)【問題解決】根據(jù)以上信息,解答下列問題:(1)填空:,,;(2)求七年級(jí)同學(xué)成績的方差,試估計(jì)哪個(gè)年級(jí)的競賽成績更整齊?(3)按照比賽規(guī)定分及其以上為優(yōu)秀,若該校七年級(jí)學(xué)生共人,八年級(jí)學(xué)生共人,請估計(jì)這兩個(gè)年級(jí)競賽成績達(dá)到優(yōu)秀學(xué)生的總?cè)藬?shù).(4)該校想讓一半以上的學(xué)生得到分及以上,你認(rèn)為該校七、八年級(jí)中哪個(gè)年級(jí)學(xué)生知識(shí)競賽成績更好?請說明理由【答案】(1);或;.(2)八年級(jí)的競賽成績更整齊.(3)人.(4)八年級(jí)的學(xué)生知識(shí)競賽成績更好.【思路點(diǎn)撥】(1)根據(jù)中位數(shù)、眾數(shù)、平均數(shù)的概念求解即可.(2)先根據(jù)方差的定義計(jì)算出七年級(jí)的方差,再比較七八年級(jí)的方差大小,結(jié)合方差的意義即可得出答案.(3)用各年級(jí)的人數(shù)乘以對應(yīng)比例,然后相加即可.(4)平均數(shù)相同,中位數(shù)和眾數(shù)都大于平均數(shù),即可得到八年級(jí)學(xué)生的知識(shí)競賽成績更好一些.【規(guī)范解答】(1)解:將七年級(jí)的抽樣成績重新排列為:;∴中位數(shù):,∴眾數(shù):或者,將八年級(jí)的抽樣成績重新排列為:,∴平均數(shù);故答案為:,72或79,80(2)解:七年級(jí)的方差是:,∴,∴八年級(jí)的競賽成績更整齊.(3)解:∵七年級(jí)以上所占比例為,八年級(jí)分以上所占比例為,∵(人)∴這兩個(gè)年級(jí)競賽成績達(dá)到優(yōu)秀學(xué)生的總?cè)藬?shù)人.(4)解:八年級(jí)的學(xué)生知識(shí)競賽成績更好,理由如下:∵平均數(shù)是,八年級(jí)的中位數(shù)和眾數(shù)都等于∴八年級(jí)的學(xué)生知識(shí)競賽成績更好.【考點(diǎn)評(píng)析】本題考查了中位數(shù)、眾數(shù)、平均數(shù)、方差,用樣本估計(jì)總體,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.25.(本題6分)(2023秋·山東泰安·八年級(jí)??计谀┪沂心持袑W(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.平均分分中位數(shù)分眾數(shù)分方差()初中部高中部(1)根據(jù)圖示計(jì)算出、、的值;(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績較好?(3)計(jì)算初中代表隊(duì)決賽成績的方差,并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.【答案】(1)平均分分,眾數(shù),中位數(shù)(2)初中部決賽成績較好(3),初中代表隊(duì)選手成績比較穩(wěn)定【思路點(diǎn)撥】(1)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義,結(jié)合已知數(shù)據(jù),求解即可;(2)本題中,在平均分相同的情況下,中位數(shù)較高的整體水平較好;(3)根據(jù)方差的定義進(jìn)行計(jì)算,再根據(jù)方差越小,數(shù)據(jù)波動(dòng)越小,數(shù)據(jù)越穩(wěn)定,可以得出結(jié)論.【規(guī)范解答】(1)解:初中名選手的平均分分,由條形圖中的數(shù)據(jù)可知初中部分?jǐn)?shù)出現(xiàn)次數(shù)最多的是分,故眾數(shù),高中名選手的成績是:70,75,80,100,100,故中位數(shù);(2)解:由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績較好;(3)解:,∵,∴初中代表隊(duì)選手成績比較穩(wěn)定.【考點(diǎn)評(píng)析】本題主要考查了平均數(shù)、眾數(shù)、中位數(shù)、方差的概念及意義,準(zhǔn)確理解相關(guān)概念是解題的關(guān)鍵.26.(本題6分)(2022秋·河南鄭州·八年級(jí)??计谀┠承榱肆私馄吣昙?jí)600名同學(xué)對防疫知識(shí)的掌握情況,對他們進(jìn)行了防疫知識(shí)測試,現(xiàn)隨機(jī)抽取甲、乙兩班各15名同學(xué)的測試成績進(jìn)行整理分析,過程如下:【收集數(shù)據(jù)】甲班15名學(xué)生測試成績分別為:78,83,89,97,98,85,100,94,87,90,93,92,99,95,100乙班15名學(xué)生測試成績中的成績?nèi)缦拢?1,92,94,90,93【整理數(shù)據(jù)】班級(jí)甲11346乙12354[分析數(shù)據(jù)]班級(jí)平均數(shù)眾數(shù)中位數(shù)方差甲92a9341.7乙9087b50.2[應(yīng)用數(shù)據(jù)](1)根據(jù)以上信息,可以求出:______分,______分;(2)若規(guī)定測試成績90分及其以上為優(yōu)秀,請估計(jì)參加防疫知識(shí)測試的600名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生共有多少人;(3)根據(jù)以上數(shù)據(jù),你認(rèn)為哪個(gè)班的學(xué)生防疫測試的整體成績較好?請說明理由(寫出一條理由即可).【答案】(1)100,91(2)估計(jì)參加防疫知識(shí)測試的600名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生共有380人(3)甲班成績較好,理由見解析【思路點(diǎn)撥】(1)根據(jù)中位數(shù)和眾數(shù)的定義進(jìn)行求解即可得;(2)用600乘以樣本中優(yōu)秀的人數(shù)占比即可得到答案;(3)從平均數(shù)和方差兩方面進(jìn)行描述即可.【規(guī)范解答】(1)解:∵甲班15名學(xué)生測試成績100出現(xiàn)次數(shù)最多,∴眾數(shù)是100分,則分;把乙組15個(gè)數(shù)按從小到大排列,則中位數(shù)是第8個(gè)數(shù),即中位數(shù)出現(xiàn)在這一組中,故分;故答案為:100,91;(2)解:根據(jù)題意得:(人),答:估計(jì)參加防疫知識(shí)測試的600名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生共有380人;(3)解:甲班成績較好,理由如下:因?yàn)榧装喑煽兊钠骄鶖?shù)大于乙班,方差小于乙班,所以甲班整體平均成績大于乙班且甲班成績穩(wěn)定(答案不唯一,合理均可).【考點(diǎn)評(píng)析】本題主要考查了眾數(shù)和中位數(shù),用樣本估計(jì)總體,用平均數(shù)和方差做決策,靈活運(yùn)用所學(xué)知識(shí)是解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論