版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Deepfakes
and
Detection姜育剛,馬興軍,吳祖煊Recap:
week9MembershipInferenceAttackDifferentialPrivacyThisWeekGeneralTampering(一般數(shù)據(jù)篡改)Deepfake(深度偽造,圖像)DeepfakeVideos(深度偽造,視頻)DetectionDALL·E3OpenAIText2Image,
ImageEditing…Imagen
2GoogleText2Image,
Text2VedioStableDiffusion
3StabilityAIText2Image,
ImageEditing…SignificantProgressinComputerVisionThis
person
does
not
exist,/
AnAI-generatedportraitsoldfor$432,000attheChristie‘s(2018)AIartworkwonfirstprizeinartcompetition.(2022)Theresolutionandfidelityofgeneratedfaceimagesareconstantlyimproving.20192021SignificantProgressinComputerVisionGenerateanimageusingthefirstparagraphof"OneHundredYearsofSolitude"
(2021)DaLL·E2(2022)Generateanimagebasedontext:“Ihave
alwayswantedtobeacoolpandaridingaskateboardinSantaMonica.”Imagic(2022)Editimageswithtext.SignificantProgressinComputerVisionDataTamperingandForgeryDefinition:Tamperimagesandvideoswithvarietyoftechniques,suchasdeepfakes.Accordingtothecontentandtypeofthetampereddata:
generaltampering&faceforgery.
AfakeimageaboutBushJr.electionThisWeek
GeneralTamperingDeepfakeDeepfakeVideosDetectionGeneralTamperingDefinition:tampertheoriginalimagebyadjustingthespatialpositionofobjects,replacingtheoriginalcontentwithforgedcontent(stylemodification,texturetransformation,imagerestoration…)
TaxonomyContext-basedtamperforegroundobjectstamperimagebackgroundConditionedText-guidedimagetamperingGeneralTamperingModeldifferentelementsintheimage:theshapeofobjects,theinteractionbetweenobjectsandtheirrelativepositions,…
?CoreProblem:howtodecoupledifferentelementsinanimage?(Foreground&Background,Texture&Structure,…)ForegroundTamperingConstructobject-levelsemanticsegmentationmapsHong,S
et
al.
Learninghierarchicalsemanticimagemanipulationthroughstructured
representations.
NeurIPS,
2018.BackgroundTamperingZou,Z
et
al.Castleinthesky:dynamicskyreplacementandharmonizationinvideos.
IEEETransactionsonImageProcessing.
2022.thebackgroundcanbeviewedasalargerobjectText-guidedTampering|CLIPRadford,A.
et
al.Learningtransferablevisualmodelsfromnaturallanguagesupervision.
ICML,
2021.Text-guidedTampering|CLIP+StyleGANPatashnik,O.
et
al.Styleclip:text-drivenmanipulationofstyleganimagery.
ICCV,
2021.Text-guidedTampering|StyleGANLatent
codeMapping
functionResidual
codetarget
codePatashnik,O.
et
al.Styleclip:text-drivenmanipulationofstyleganimagery.
ICCV,
2021.Text-guidedTampering|DiffusionHo,J.
et
al.Denoisingdiffusionprobabilisticmodels.NeurIPS,
2020.ThedirectedgraphicalmodelofDDPMGraphicalmodelsfordiffusion(left)andnon-Markovian(right)inferencemodelsSong,J.
et
al.Denoisingdiffusionimplicitmodels.ICLR,
2022.Text-guidedTampering|CLIP+DiffusionRombachR.etal.High-resolutionimagesynthesiswithlatentdiffusionmodels,
CVPR,2022.StableDiffusionThisWeekGeneralTampering
DeepfakeDeepfakeVideosDetectionDeepfakeDefinition:
believablemediageneratedbyadeepneuralnetworkForm:
generation&manipulationofhumanimageryDeeplearning+fakeGANs(GenerativeAdversarialNetworks)Derivesfromthe“zero-sumgame”ingametheory.LearnthedistributionofdatathroughaGeneratorandaDiscriminatorFaceForgeryAlice’sbodywithBob’sfaceAliceBobDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryReenactment(人臉重演)Replacement(人臉互換)Editing(人臉編輯)Synthesis(人臉合成)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.
FaceForgerySTEPS:DetectsandcropsthefaceExtractsintermediaterepresentationsGeneratesanewfacebasedonsomedrivingsignalBlendsthegeneratedfacebackintothetargetframeMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.FaceReenactmentSTEPSingeneral:facetracking(面部追蹤)facematching(面部匹配)facetransfer(面部遷移)PareidoliaFaceReenactmentSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.pareidoliafacereenactmentPareidoliaFaceReenactmentChallengesThetargetfacesarenothumanfaces1Shapevariance2Texturevariancee.g.squaremouthe.g.woodtextureSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.PURAParametricUnsupervisedReenactmentAlgorithmParametricShapeModeling(PSM,參數(shù)化形狀建模)ExpansionaryMotionTransfer(EMT,擴展運動遷移)UnsupervisedTextureSynthesizer
(UTS,無監(jiān)督紋理合成器)Song,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.PURAParametricUnsupervisedReenactmentAlgorithmSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.
et
al.Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2021.?lacktheabilitytogeneralizetoarbitraryidentity?failtopreserveattributeslikefacialexpressionandgazedirectionIDInjectionModule(IIM)(身份注入模塊)WeakFeatureMatchingLoss(弱特征匹配損失)FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.,et
al.
Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2020FaceReplacement|SimswapIdentityLossWeakFeatureMatchingLossChen,R.,et
al.
Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2020ThisWeekGeneralTamperingDeepfake
DeepfakeVideosDetectionDeepfakeVideosMoredimensions:TiminginformationTherelativepositionofdifferentsubjectsandobjectsAudiofakesDeepfakeVideosChallengesHowtogeneratereasonablegesturesHowtogenerateafakevideoinhighresolutionHowtogeneratehigh-qualitylongvideosReasonableGesturesSiarohin,A.
et
al.Firstordermotionmodelforimageanimation.
NeurIPS,
2-19.First-order-motionModelReasonableGesturesSiarohin,A.
et
al.
Firstordermotionmodelforimageanimation.
NeurIPS,
2019.MotionEstimationModuleUseasetoflearnedkeypointsandtheiraffinetransformationstopredictdensemotionReasonableGesturesGenerationModuleWarpthesourceimageaccordingtoInpainttheimagepartsthatareoccludedinthesourceimage.Siarohin,A.
et
al.
Firstordermotionmodelforimageanimation.
NeurIPS,
2019.HighResolutionTian,Y.,
et
al.
Agoodimagegeneratoriswhatyouneedforhigh-resolutionvideosynthesis.ICLR,
2022.MoCoGAN-HDHigh-qualityLongVideosYu,S.
et
al.Generatingvideoswithdynamics-awareimplicitgenerativeadversarialnetworks.arXivpreprintarXiv:2202.10571.DIGANThisWeekGeneralTamperingDeepfakeDeepfakeVideos
DetectionTamperingDetectionTaxonomy:GeneralTamperingDetection——whetheranordinaryobjectinanimagehasbeentamperedwithDeepfakeDetection——whetherthepartofthefaceintheimagehasbeentamperedwithFeatures&SemanticsGeneralTamperingDetectionExistinggeneraltamperingdetectionmethodsmainlyfocusonsplicing,copy-moveandremovalGeneralTamperingDetectionEarlydetectionmethodsImageTamperingThecorrelationbetweenpixelsintroducedduringcameraimaging(LCA,…)Thefrequency-domainorstatisticalfeaturesoftheimageandthenoiseitcontains(PRNU)GeneralTamperingDetectionCopy-moveDetectionMethodsBlock-basedregionduplicationDivideanimageintomanyequal-sizeblocks,andifduplicatedregionsexistintheimage,thereshouldbeduplicatedblocksaswell.Comparetheblocks.(Pixelvalues,Statisticalmeasures,Frequencycoefficients,Momentinvariants,…)Keypoint-basedregionduplicationConcentrateonafewkeypointswithinanimagesothecomputationcostcanbesignificantlyreduced.(SIFT,SURF)SplicingDetectionMethodsEdgeanomalyRegionanomaly:JPEGcompressionRegionanomaly:lightinginconsistencyRegionanomaly:inconsistencesofcameratracesGeneralTamperingDetectionGeneralTamperingDetectionRemovalDetectionMethodsBlurringartifactsbydiffusion-basedtamperingBlockduplicationbyexemplar-basedtamperingGeneralTamperingDetectionLaterdetectionmethods(DL)Medianfilteringforensics+CNN(Chenetal.,2015)RGB-N(Zhouetal.,2018)SPAN,spatialpyramidattentionnetwork(Huetal.,2020)Mantra-Net(Wuetal.,2019)PSCC-Net,progressivespatio-channelcorrelationnetwork(Liuetal.,2022)CountermeasuresDetectionPreventionMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.Detection|Artifact-specificDeepfakesoftengenerateartifactswhichmaybesubtletohumans,butcanbeeasilydetectedusingmachinelearningandforensicanalysis.Blending
(spatial)Environment(spatial)
Forensics(spatial)
Behavior(temporal)Physiology(temporal)Synchronization
(temporal)Coherence(temporal)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.BlendingTrainedaCNNtopredictanimage’sblendingboundaryandalabel(realorfake)LingzhiLi,et
al.Facex-rayformoregeneralfaceforgerydetection.CVPR,
2020.BlendingSplicesimilarfacesfoundthroughfaciallandmarksimilaritytogenerateadatasetoffaceswaps.OverviewofgeneratingatrainingsampleLingzhiLi,et
al.Facex-rayformoregeneralfaceforgerydetection.CVPR,
2020.ForensicsDetectdeepfakesbyanalyzingsubtlefeaturesandpatternsleftbythemodel.GANsleaveuniquefingerprintsItispossibletoclassifythegeneratorgiventhecontent,eveninthepresenceofcompressionandnoiseNingYu
et
al.AttributingfakeimagestoGANs:LearningandanalyzingGANfingerprints.ICCV,
2019.Detection|UndirectedApproachesTraindeepneuralnetworksasgenericclassifiers,andletthenetworkdecidewhichfeaturestoanalyze.ClassificationAnomalyDetectionClassificationTharinduF.,
et
al.
ExploitingHumanSocialCognitionfortheDetectionofFakeandFraudulentFacesviaMemoryNetworks.
arXiv:1911.07844.HierarchicalMemoryNetwork(HMN)architectureAnomalyDetectionanomalydetectionmodelsaretrainedonthenormaldataandthendetectoutliersduringdeployment.RunWang
et
al.Fakespotter:
Asimplebaselineforspottingai-synthesizedfakefaces.arXiv:1909.06122.Monitorneuronbehaviors(coverage)tospotAI-synthesizedfakefaces.Obtainastrongersignalfromthanjustusingtherawpixels.Isabletoovercomenoiseandotherdistortions.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Prevention&MitigationDataprovenance(數(shù)據(jù)溯源)Dataprovenanceofmultimediashouldbetrackedthroughdistributedledgersandblockchainnetworks.(Fraga-Lamasetal.,2019)ThecontentshouldberankedbyparticipantsandAI.(Chenetal.,2019.)Thecon
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡安全投標售后保障
- 玩具店內(nèi)部裝修工裝施工合同
- 礦石材料標簽規(guī)范
- 車站監(jiān)控系統(tǒng)施工合同
- 農(nóng)業(yè)用肥料標簽管理辦法
- 鋁廠混凝土施工合同
- 咨詢公司財務規(guī)劃策略
- 環(huán)保技術(shù)開發(fā)招標辦法
- 酒類批發(fā)市場衛(wèi)生條例
- 溫泉公園施工合同
- 2024法務部門合規(guī)風險管理實踐模板
- 商場保潔服務日常巡檢方案
- 中醫(yī)培訓課件:《艾灸技術(shù)》
- 學??蒲刑幪庨L述職報告范文
- 國家開放大學《理工英語4》綜合練習參考答案
- 護理文書書寫規(guī)范
- 河北省保定市2023-2024學年高二上學期期末調(diào)研數(shù)學試題(含答案解析)
- LS/T 1234-2023植物油儲存品質(zhì)判定規(guī)則
- 2016-2023年江蘇醫(yī)藥職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 提醒關(guān)電關(guān)水關(guān)門注意安全的公告
- 箱變檢測報告
評論
0/150
提交評論