版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆上海市文綺中學(xué)高一數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.2.已知某幾何體的三視圖如圖所示,則該幾何體的體積為A. B.C. D.3.函數(shù)的單調(diào)遞減區(qū)間為()A. B.C. D.4.若是三角形的一個內(nèi)角,且,則三角形的形狀為()A.鈍角三角形 B.銳角三角形C.直角三角形 D.無法確定5.“”是“冪函數(shù)為偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.最小正周期為,且在區(qū)間上單調(diào)遞增的函數(shù)是()A.y=sinx+cosx B.y=sinx-cosxC.y=sinxcosx D.y=7.曲線與直線在軸右側(cè)的交點按橫坐標(biāo)從小到大依次記為,,,,,…,則等于A. B.2C.3 D.8.若,且,則角的終邊位于A.第一象限 B.第二象限C.第三象限 D.第四象限9.下列四個圖形中,不是以x為自變量的函數(shù)的圖象是()A B.C. D.10.函數(shù)的部分圖像是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,是指海水在天體(主要是月球和太陽)引潮力作用下所產(chǎn)生的周期性運動.習(xí)慣上把海面垂直方向漲落稱為潮汐,而海水在水平方向的流動稱為潮流.早先的人們?yōu)榱吮硎旧钡臅r刻,把發(fā)生在早晨的高潮叫潮,發(fā)生在晚上的高潮叫汐,這是潮汐名稱的由來.下表中給出了某市碼頭某一天水深與時間的關(guān)系(夜間零點開始計時).時刻(t)024681012水深(y)單位:米5.04.84.74.64.44.34.2時刻(t)141618202224水深(y)單位:米4.34.44.64.74.85.0用函數(shù)模型來近似地描述這些數(shù)據(jù),則________.12.如圖,全集,A是小于10的所有偶數(shù)組成的集合,,則圖中陰影部分表示的集合為__________.13.直線2x+(1-a)y+2=0與直線ax-3y-2=0平行,則a=__________14.已知點是角終邊上任一點,則__________15.已知冪函數(shù)的圖象過點,且,則a的取值范圍是______16.已知向量,滿足=(3,-4),||=2,|+|=,則,的夾角等于______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的最小值和最大值.18.已知定義在上的奇函數(shù).(1)求實數(shù)的值;(2)解關(guān)于的不等式19.計算:(1);(2)若,求的值20.已知函數(shù)在一個周期內(nèi)的圖象如圖所示.(1)求函數(shù)的解析式;(2)若存在,使得關(guān)于的不等式成立,求實數(shù)的最小值.21.在年初的時候,國家政府工作報告明確提出,年要堅決打好藍天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實施散煤綜合治理.實施煤改電工程后,某縣城的近六個月的月用煤量逐漸減少,月至月的用煤量如下表所示:月份用煤量(千噸)(1)由于某些原因,中一個數(shù)據(jù)丟失,但根據(jù)至月份數(shù)據(jù)得出樣本平均值是,求出丟失的數(shù)據(jù);(2)請根據(jù)至月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計數(shù)據(jù)與月月的實際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項目是否達到預(yù)期,若誤差均不超過,則認(rèn)為該地區(qū)的改造已經(jīng)達到預(yù)期,否則認(rèn)為改造未達預(yù)期,請判斷該地區(qū)的煤改電項目是否達預(yù)期?(參考公式:線性回歸方程,其中)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】首先判斷函數(shù)的奇偶性,再根據(jù)特殊值判斷即可;【詳解】解:∵,∴是偶函數(shù),函數(shù)圖象關(guān)于軸對稱,排除A,B選項;∵,∴在上不單調(diào),排除D選項故選:C2、D【解析】解:該幾何體是一個底面半徑為1、高為4的圓柱被一個平面分割成兩部分中的一個部分,故其體積為.本題選擇D選項.3、A【解析】解不等式,,即可得答案.【詳解】解:函數(shù),由,,得,,所以函數(shù)的單調(diào)遞減區(qū)間為,故選:A.4、A【解析】已知式平方后可判斷為正判斷的正負(fù),從而判斷三角形形狀【詳解】解:∵,∴,∵是三角形的一個內(nèi)角,則,∴,∴為鈍角,∴這個三角形為鈍角三角形.故選:A5、C【解析】根據(jù)函數(shù)的奇偶性的定義和冪函數(shù)的概念,結(jié)合充分條件、必要條件的判定方法,即可求解.詳解】由,即,解得或,當(dāng)時,,此時函數(shù)的定義域為關(guān)于原點對稱,且,所以函數(shù)為偶函數(shù);當(dāng)時,,此時函數(shù)的定義域為關(guān)于原點對稱,且,所以函數(shù)為偶函數(shù),所以充分性成立;反之:冪函數(shù),則滿足,解得或或,當(dāng)時,,此時函數(shù)為偶函數(shù);當(dāng)時,,此時函數(shù)為偶函數(shù),當(dāng)時,,此時函數(shù)為奇函數(shù)函數(shù),綜上可得,實數(shù)或,即必要性成立,所以“”是“冪函數(shù)為偶函數(shù)”的充要條件.故選:C.6、B【解析】選項、先利用輔助角公式恒等變形,再利用正弦函數(shù)圖像的性質(zhì)判斷周期和單調(diào)遞增區(qū)間即可,選項先利用二倍角的正弦公式恒等變形,再利用正弦函數(shù)圖像的性質(zhì)判斷周期和單調(diào)遞增區(qū)間即可,選項直接利用正切函數(shù)圖象的性質(zhì)去判斷即可.【詳解】對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上單調(diào)遞增,則選項錯誤;對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上為單調(diào)遞增,則選項正確;對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上為單調(diào)遞增,則選項錯誤;對于選項,,最小正周期為,在為單調(diào)遞增,則選項錯誤;故選:.7、B【解析】曲線與直線在軸右側(cè)的交點按橫坐標(biāo)從小到大依次記為,曲線與直線在軸右側(cè)的交點按橫坐標(biāo)轉(zhuǎn)化為根,解簡單三角方程可得對應(yīng)的橫坐標(biāo)分別為,,故選B.【思路點睛】本題主要考查三角函數(shù)的圖象以及簡單的三角方程,屬于中檔題.解答本題的關(guān)鍵是將曲線與直線在軸右側(cè)的交點按橫坐標(biāo)轉(zhuǎn)化為根,可得或,令取特殊值即可求得,從而可得.8、B【解析】∵sinα>0,則角α的終邊位于一二象限或y軸的非負(fù)半軸,∵由tanα<0,∴角α的終邊位于二四象限,∴角α的終邊位于第二象限故選擇B9、C【解析】根據(jù)函數(shù)中每一個自變量有且只有唯一函數(shù)值與之對應(yīng),結(jié)合函數(shù)圖象判斷符合函數(shù)定義的圖象即可.【詳解】由函數(shù)定義:定義域內(nèi)的每一個x都有唯一函數(shù)值與之對應(yīng),A、B、D選項中的圖象都符合;C項中對于大于零的x而言,有兩個不同的函數(shù)值與之對應(yīng),不符合函數(shù)定義.故選:C10、D【解析】根據(jù)函數(shù)的奇偶性和函數(shù)值在某個區(qū)間上的符號,對選項進行排除,由此得出正確選項.【詳解】∵是奇函數(shù),其圖像關(guān)于原點對稱,∴排除A,C項;當(dāng)時,,∴排除B項.故選D.【點睛】本小題主要考查函數(shù)圖像的識別,考查函數(shù)的單調(diào)性,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】根據(jù)題意條件,結(jié)合表內(nèi)給的數(shù)據(jù),通過一天內(nèi)水深的最大值和最小值,即可列出關(guān)于、之間的關(guān)系,通過解方程解出、,即可求解出答案.【詳解】由表中某市碼頭某一天水深與時間的關(guān)系近似為函數(shù),從表中數(shù)據(jù)可知,函數(shù)的最大值為5.0,最小值為4.2,所以,解得,,故.故答案為:或?qū)懗?12、【解析】根據(jù)維恩圖可知,求,根據(jù)補集、交集運算即可.【詳解】,A是小于10的所有偶數(shù)組成的集合,,,由維恩圖可知,陰影部分為,故答案為:13、3【解析】a=0時不滿足條件,∵直線2x+(1-a)y+2=0與直線ax-3y-2=0平行a≠0,∴解得a=314、##【解析】將所求式子,利用二倍角公式和平方關(guān)系化為,然后由商數(shù)關(guān)系弦化切,結(jié)合三角函數(shù)的定義即可求解.【詳解】解:因為點是角終邊上任一點,所以,所以,故答案為:.15、【解析】先求得冪函數(shù)的解析式,根據(jù)函數(shù)的奇偶性、單調(diào)性來求得的取值范圍.【詳解】設(shè),則,所以,在上遞增,且為奇函數(shù),所以.故答案為:16、【解析】利用求解向量間的夾角即可【詳解】因為,所以,因為,所以,即,所以,所以,因為向量夾角取值范圍是,所以向量與向量的夾角為【點睛】本題考查向量的運算,這種題型中利用求解向量間的夾角同時需注意三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為,最小值為..【解析】(1)根據(jù)最小正周期的計算公式求解出的最小正周期;(2)先求解出的取值范圍,然后根據(jù)正弦函數(shù)的單調(diào)性求解出在區(qū)間上的最值.【詳解】(1)因為,所以;(2)因為,所以,當(dāng)時,,此時,當(dāng)時,,此時,故在區(qū)間上的最大值為,最小值為.18、(1)1;(2).【解析】(1)由奇函數(shù)的性質(zhì)有,可求出的值,注意驗證是否為奇函數(shù).(2)根據(jù)函數(shù)的奇偶性、單調(diào)性可得,再結(jié)合對數(shù)函數(shù)的性質(zhì)求解集.【小問1詳解】因為是定義在上的奇函數(shù),所以,解得,經(jīng)檢驗是奇函數(shù),即【小問2詳解】由,得,又是定義在上的奇函數(shù),所以,易知在上遞增,所以,則,解得,所以原不等式的解集為19、(1)(2)【解析】(1)根據(jù)分?jǐn)?shù)指數(shù)冪、對數(shù)的運算法則及換底公式計算可得;(2)根據(jù)換底公式的性質(zhì)得到,再根據(jù)指數(shù)對數(shù)恒等式得到,即可得解;【小問1詳解】解:【小問2詳解】解:,,,20、(1)(2)【解析】(1)結(jié)合圖象,由最大最小值可得,由可得,由函數(shù)圖象經(jīng)過點可求,從而可得答案.(2)原不等式等價于存在,使得成立,即,令,利用函數(shù)單調(diào)性求解最小值即可得答案.【小問1詳解】解:由圖可知,設(shè)函數(shù)的最小正周期為,,,,,又由圖可知函數(shù)的圖象經(jīng)過點,,,,【小問2詳解】解:由(1)知原不等式等價于,即.又,∴原不等式等價于存在,使得成立,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年鐵木筷項目投資價值分析報告
- 2024至2030年船用柴油機主起動閥項目投資價值分析報告
- 2024至2030年合金銅環(huán)項目投資價值分析報告
- 2024年顏料色漿項目可行性研究報告
- 2024年中國貯能點焊機市場調(diào)查研究報告
- 2024年平板式靜電測試儀項目可行性研究報告
- 2024年中國電子消毒除臭烘干鞋柜市場調(diào)查研究報告
- 2024年中國烷基糖苷市場調(diào)查研究報告
- 青海高等職業(yè)技術(shù)學(xué)院《投資學(xué)原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 青海大學(xué)昆侖學(xué)院《高分子科學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 【基于抖音短視頻的營銷策略分析文獻綜述2800字(論文)】
- 2021-2022學(xué)年度西城區(qū)五年級上冊英語期末考試試題
- 《組織行為學(xué)》(本)形考任務(wù)1-4
- 廣東省廣州市白云區(qū)2022-2023學(xué)年九年級上學(xué)期期末語文試題
- 劇本-進入黑夜的漫長旅程
- DB43-T 958.3-2023 實驗用小型豬 第3部分:配合飼料
- 化肥購銷合同范本正規(guī)范本(通用版)
- 健康管理專業(yè)職業(yè)生涯規(guī)劃書
- 外墻巖棉板施工方案
- 吊裝葫蘆施工方案
- 自動化設(shè)備調(diào)試規(guī)范
評論
0/150
提交評論