版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省南昌市新建縣一中2025屆高二數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將直線2x-y+λ=0沿x軸向左平移1個單位,所得直線與圓x2+y2+2x-4y=0相切,則實數(shù)λ值為()A.-3或7 B.-2或8C0或10 D.1或112.1202年,意大利數(shù)學家斐波那契出版了他的《算盤全書》.他在書中收錄了一些有意思的問題,其中有一個關于兔子繁殖的問題:如果1對兔子每月生1對小兔子(一雌一雄),而每1對小兔子出生后的第3個月里,又能生1對小兔子,假定在不發(fā)生死亡的情況下,如果用Fn表示第n個月的兔子的總對數(shù),則有(n>2),.設數(shù)列{an}滿足:an=,則數(shù)列{an}的前36項和為()A.11 B.12C.13 D.183.已知,記M到x軸的距離為a,到y(tǒng)軸的距離為b,到z軸的距離為c,則()A. B.C. D.4.已知是雙曲線的左焦點,為右頂點,是雙曲線上的點,軸,若,則雙曲線的離心率為()A. B.C. D.5.函數(shù)的定義域為,其導函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.56.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=07.設、分別是橢圓()的左、右焦點,過的直線l與橢圓E相交于A、B兩點,且,則的長為()A. B.1C. D.8.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進行培訓,每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種9.已知且,則下列不等式恒成立的是A. B.C. D.10.在正三棱錐S?ABC中,M、N分別是棱SC、BC的中點,且,若側棱,則正三棱錐S?ABC外接球的表面積是()A. B.C. D.11.數(shù)列中,,,若,則()A.2 B.3C.4 D.512.若直線與圓相切,則()A. B.或2C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),,,滿足,,,則的最大值是______14.設分別是平面的法向量,若,則實數(shù)的值是________15.曲線在處的切線斜率為___________.16.某中學高一年級有420人,高二年級有460人,高三年級有500人,用分層抽樣的方法抽取部分樣本,若從高一年級抽取21人,則從高三年級抽取的人數(shù)是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為落實國家扶貧攻堅政策,某地區(qū)應上級扶貧辦的要求,對本地區(qū)所有貧困戶每年年底進行收入統(tǒng)計,下表是該地區(qū)貧困戶從2017年至2020年的收入統(tǒng)計數(shù)據(jù):(其中y為貧困戶的人均年純收入)年份2017年2018年2019年2020年年份代碼1234人均年純收入y/百元25283235(1)在給定的坐標系中畫出A貧困戶的人均年純收入關于年份代碼的散點圖;(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程,并估計A貧困戶在年能否脫貧.(注:假定脫貧標準為人均年純收入不低于元)參考公式:,參考數(shù)據(jù):,.18.(12分)在①直線l:是拋物線C的準線;②F是橢圓的一個焦點;③,對于C上的點A,的最小值為;在以上三個條件中任選一個,填到下面問題中的橫線處,并完成解答.已知拋物線C:的焦點為F,滿足_____(1)求拋物線C的標準方程;(2)是拋物線C上在第一象限內的一點,直線:與C交于M,N兩點,若的面積為,求m的值19.(12分)已知函數(shù)(1)討論函數(shù)的單調性;(2)證明:對任意正整數(shù)n,20.(12分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列為等差數(shù)列;(2)設,求數(shù)列的前項和.21.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設直線不經過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標22.(10分)如圖,在直三棱柱中,,,D為的中點(1)求證:平面;(2)求平面與平面的夾角的余弦值;(3)若E為的中點,求與所成的角
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)直線平移的規(guī)律,由直線2x﹣y+λ=0沿x軸向左平移1個單位得到平移后直線的方程,然后因為此直線與圓相切得到圓心到直線的距離等于半徑,利用點到直線的距離公式列出關于λ的方程,求出方程的解即可得到λ的值解:把圓的方程化為標準式方程得(x+1)2+(y﹣2)2=5,圓心坐標為(﹣1,2),半徑為,直線2x﹣y+λ=0沿x軸向左平移1個單位后所得的直線方程為2(x+1)﹣y+λ=0,因為該直線與圓相切,則圓心(﹣1,2)到直線的距離d==r=,化簡得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故選A考點:直線與圓的位置關系2、B【解析】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),再根據(jù)an=,即可求出數(shù)列{an}的前36項和【詳解】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項都為奇數(shù),∴前36項共有12項為偶數(shù),∴數(shù)列{an}的前36項和為12×1+24×0=12.故選:B3、C【解析】分別求出點M在x軸,y軸,z軸上的投影點的坐標,再借助空間兩點間距離公式計算作答.【詳解】設點M在x軸上的投影點,則,而x軸的方向向量,由得:,解得,則,設點M在y軸上的投影點,則,而y軸的方向向量,由得:,解得,則,設點M在z軸上的投影點,則,而z軸的方向向量,由得:,解得,則,所以.故選:C4、C【解析】根據(jù)條件可得與,進而可得,,的關系,可得解.【詳解】由已知得,設點,由軸,則,代入雙曲線方程可得,即,又,所以,即,整理可得,故,解得或(舍),故選:C.5、C【解析】根據(jù)給定的導函數(shù)的圖象,結合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設導函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側的導數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.6、D【解析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【詳解】由于傾斜角為120°,故斜率k=-.又直線過點(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【點睛】本題考查直線方程的斜截式,屬于基礎題7、C【解析】由橢圓的定義得:,,結合條件可得,即可得答案.【詳解】由橢圓的定義得:,,又,,所以,由橢圓知,所以.故選:C8、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據(jù)題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數(shù)有4!種,根據(jù)乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應用問題,屬基礎題,關鍵是首先確定人數(shù)的分配情況,然后利用先選后排思想求解.9、C【解析】∵且,∴∴選C10、A【解析】由題意推出平面,即平面,,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積【詳解】∵,分別為棱,的中點,∴,∵三棱錐為正棱錐,作平面,所以是底面正三角的中心,連接并延長交與點,∵底面是正三角形,,平面∴,,∵,平面,平面,∴平面,∵平面,∴,∴,又∵,而,且,平面,∴平面,∴平面,∴,因為S?ABC是正三棱錐。所以,以,,為從同一定點出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,正方體的體對角線就是球的直徑,,所以.故選:A.11、C【解析】由已知得數(shù)列是以2為首項,以2為公比的等比數(shù)列,求出,再利用等比數(shù)列求和可得答案.【詳解】∵,∴,所以,數(shù)列是以2為首項,以2為公比的等比數(shù)列,則,∴,∴,則,解得.故選:C.12、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】采用數(shù)形結合法,將所求問題轉化為兩點到直線的距離和的倍,結合梯形中位線性質和三角形三邊關系可求得答案.【詳解】由,,,可知,點在圓上,由,即為等腰直角三角形,結合點到直線距離公式可理解為圓心到直線的距離,變形得,即所求問題可轉化為兩點到直線的距離和的倍,作于于,中點為,中點為,由梯形中位線性質可得,,作于,于,連接,則,當且僅當與重合,三點共線時,有最大值,由點到直線距離公式可得,由幾何性質可得,,此時,故的最大值為.故答案為:10.14、4【解析】根據(jù)分別是平面的法向量,且,則有求解.【詳解】因為分別是平面的法向量,且所以所以解得故答案為:4【點睛】本題主要考查空間向量垂直,還考查了運算求解的能力,屬于基礎題.15、##【解析】首先求得的導數(shù),由導數(shù)的幾何意義可得切線的斜率.【詳解】因為函數(shù)的導數(shù)為,所以可得在處的切線斜率,故答案為:16、25【解析】由條件先求出抽樣比,從而可求出從高三年級抽取的人數(shù).【詳解】由題意抽樣比例:則從高三年級抽取的人數(shù)是人故答案為:25三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)散點圖見解析;(2),能夠脫貧.【解析】(1)直接畫出點即可;(2)利用公式求出與,即可求出,把代入即可估計出A貧困戶在2021年能否脫貧.【小問1詳解】畫出y關于x的散點圖,如圖所示:【小問2詳解】根據(jù)表中數(shù)據(jù),計算,,又因為,,所以,,關于的線性回歸方程,當時,(百元),估計年A貧困戶人均年純收入達到元,能夠脫貧.18、(1)(2)或.【解析】(1)選條件①,由準線方程得參數(shù),從而得拋物線方程;選條件②,由橢圓的焦點坐標與拋物線焦點坐標相同求得得拋物線方程;選條件③,由F,A,B三點共線時,,再由兩點間距離公式求得得拋物線方程;(2)求出點坐標,由點到直線距離公式求得到直線的距離,設,,直線方程代入拋物線方程,判別式大于0保證相交,由韋達定理得,由弦長公式得弦長,再計算出三角形的面積后可解得【小問1詳解】選條件①:由準線方程為知,所以拋物線C的方程為選條件②:因為拋物線的焦點坐標為所以由已知得橢圓的一個焦點為.所以,又,所以,所以拋物線C的方程為選條件③:由題意可知得,當F,A,B三點共線時,,由兩點間距離公式,解得,所以拋物線C的方程為.【小問2詳解】把代入方程,可得,設,,聯(lián)立,消去y可得,由,解得,又知,,所以,由到直線的距離為,所以,即,解得或經檢驗均滿足,所以m的值為或.19、(1)見解析(2)見解析【解析】(1)由,令,得,或,又的定義域為,討論兩個根及的大小關系,即可判定函數(shù)的單調性;(2)當時,在,上遞減,則,即,由此能夠證明【小問1詳解】的定義域為,,令,得,或,①當,即時,若,則,遞增;若,則,遞減;②當,即時,若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當-2<a<0時,f(x)在,單調遞減,在單調遞增;當a≥0時,f(x)在單調遞增,在單調遞減.【小問2詳解】由(2)知當時,在,上遞減,,即,,,,2,3,,,,【點睛】本題考查利用導數(shù)研究函數(shù)的單調性,本題的關鍵是令a=1,用已知函數(shù)的單調性構造,再令x=恰當?shù)乩脤?shù)求和進行解題20、(1)證明見解析(2)【解析】(1)化簡得到,由此證得數(shù)列為等差數(shù)列.(2)先求得,然后利用錯位相減求和法求得.【小問1詳解】.又數(shù)列是以1為首項,4為公差等差數(shù)列.【小問2詳解】由(1)知:,則數(shù)列的通項公式為,則,①,②,①-②得:,,,,.21、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設斜率存在,設出直線,利用斜率之和為,求出之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當直線斜率存在時,令方程為,由得所以得方程為,過定點當直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關鍵點在于先假設斜率存在,設出直線,利用題目所給條件得到之間的關系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.22、(1)證明見解析(2)(3)【解析】(1)連接,交于O,連接OD,根據(jù)中位線的性質,可證,根據(jù)線面平行的判定定理,即可得證;(2)如圖建系,求得各點坐標,進
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買賣合同的寫作要點3篇
- 房屋買賣合同版格式版格式樣式3篇
- 數(shù)據(jù)保密合同3篇
- 攪拌站分包合同違約責任3篇
- 旅游導游計件工資提升服務質量3篇
- 按揭合同補充協(xié)議的制定背景3篇
- 工業(yè)罩棚施工合同3篇
- 房屋買賣委托書怎么寫才有效3篇
- 攝影設備維護合同3篇
- 授權委托書合同范本3篇
- 化工和危險化學品企業(yè)評估分級指南(大中型企業(yè)版)
- 管理咨詢服務實施方案
- 瑞得RTS-820系列全站儀說明書(適用RTS-822.822A.822L.822R.822R .822R3)
- 物流信息技術(2023-2024-1)學習通超星期末考試答案章節(jié)答案2024年
- 建筑垃圾外運施工方案
- 彩票行業(yè)數(shù)字化轉型
- 術后肺炎預防和控制專家共識解讀課件
- 2024秋期國家開放大學??啤督洕鷮W基礎》一平臺在線形考(形考任務1至5)試題及答案
- 管道拆除施工方案
- 2024二十屆三中全會知識競賽題庫及答案
- 2024年執(zhí)業(yè)藥師繼續(xù)教育答案
評論
0/150
提交評論