




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題18反比例函數(shù)與幾何圖形的綜合應(yīng)用考點(diǎn)一反比例函數(shù)與三角形的綜合應(yīng)用考點(diǎn)二反比例函數(shù)與平行四邊形的綜合應(yīng)用考點(diǎn)三反比例函數(shù)與矩形的綜合應(yīng)用考點(diǎn)四反比例函數(shù)與菱形的綜合應(yīng)用考點(diǎn)五反比例函數(shù)與正方形的綜合應(yīng)用考點(diǎn)一反比例函數(shù)與三角形的綜合應(yīng)用例題:(2022·江西·崇仁縣第二中學(xué)二模)如圖,在等腰三角形AOB中,AO=AB,點(diǎn)O是平面直角坐標(biāo)系原點(diǎn),點(diǎn)A在反比例函數(shù)的圖象上,已知OA=5,OB=6.(1)求反比例函數(shù)的解析式;(2)過(guò)點(diǎn)A作AP垂直O(jiān)A,交反比例函數(shù)的圖象于點(diǎn)P,交x軸于點(diǎn)C.①求直線AC的解析式;②求點(diǎn)P的坐標(biāo).【變式訓(xùn)練】1.(2022·山東東營(yíng)·中考真題)如圖,是等腰直角三角形,直角頂點(diǎn)與坐標(biāo)原點(diǎn)重合,若點(diǎn)B在反比例函數(shù)的圖象上,則經(jīng)過(guò)點(diǎn)A的反比例函數(shù)表達(dá)式為_(kāi)___________.2.(2022·江蘇·淮安市淮安區(qū)教師發(fā)展中心學(xué)科研訓(xùn)處模擬預(yù)測(cè))如圖,把一個(gè)等腰直角三角形ACB放在平面直角坐標(biāo)系中,∠ACB=90°,點(diǎn)C(﹣2,0),點(diǎn)B在反比例函數(shù)的圖象上,且y軸平分∠BAC,則k的值是________.3.(2022·陜西省西安高新逸翠園學(xué)校模擬預(yù)測(cè))如圖,平面直角坐標(biāo)系中,△OAB和△BCD都是等腰直角三角形,且∠A=∠C=90°,點(diǎn)B、D都在x軸上,點(diǎn)A、C都在反比例函數(shù)y=(x>0)的圖象上,則點(diǎn)C的橫坐標(biāo)為_(kāi)_______.4.(2022·貴州黔東南·中考真題)如圖,在平面直角坐標(biāo)系中,等腰直角三角形的斜邊軸于點(diǎn),直角頂點(diǎn)在軸上,雙曲線經(jīng)過(guò)邊的中點(diǎn),若,則______.5.(2022·貴州銅仁·九年級(jí)期末)如圖1,點(diǎn)A(0,8)、點(diǎn)B(2,a)在直線y=﹣2x+b上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)B.(1)求a和k的值;(2)將線段AB向右平移m個(gè)單位長(zhǎng)度(m>0),得到對(duì)應(yīng)線段CD,連接AC、BD.①如圖2,當(dāng)m=3時(shí),過(guò)D作DF⊥x軸于點(diǎn)F,交反比例函數(shù)圖象于點(diǎn)E,求的值;②在線段AB運(yùn)動(dòng)過(guò)程中,連接BC,若△BCD是以BC為腰的等腰三角形,求所有滿足條件的m的值.6.(2022·河南新鄉(xiāng)·八年級(jí)期中)如圖,在平面直角坐標(biāo)系中,點(diǎn),分別在反比例函數(shù)和的圖象上,軸于點(diǎn),軸于點(diǎn),是線段的中點(diǎn),,.(1)求反比例函數(shù)的表達(dá)式;(2)連接,,,求的面積;(3)是線段上的一個(gè)動(dòng)點(diǎn),是線段上的一個(gè)動(dòng)點(diǎn),試探究是否存在點(diǎn),使得是等腰直角三角形?若存在,求所有符合條件點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.考點(diǎn)二反比例函數(shù)與平行四邊形的綜合應(yīng)用例題:(2022·河南南陽(yáng)·八年級(jí)期中)已知,如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,0),C(-1,2)是平行四邊形OABC的兩個(gè)頂點(diǎn),反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn)B.(1)求出反比例函數(shù)的表達(dá)式;(2)將平行四邊形OABC沿著x軸翻折,點(diǎn)C落在點(diǎn)D處,判斷點(diǎn)D是否在反比例函數(shù)的圖像上,并說(shuō)明理由;(3)在x軸上是否存在一點(diǎn)P,使是以O(shè)C為腰的等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【變式訓(xùn)練】1.(2022·重慶·巴川初級(jí)中學(xué)校九年級(jí)期末)如圖,平行四邊形ABCD的BC邊過(guò)原點(diǎn)O,頂點(diǎn)D在x軸上,反比例函數(shù)的圖象過(guò)AD邊上的A,E兩點(diǎn),已知平行四邊形ABCD的面積為8,,則k的值為_(kāi)_____.2.(2022·福建泉州·八年級(jí)期中)如圖,點(diǎn)D是平行四邊形內(nèi)一點(diǎn),軸,軸,且,,,若反比例函數(shù)的圖象經(jīng)過(guò)A、D兩點(diǎn),則k的值是______.3.(2021·河北保定·九年級(jí)期末)如圖,平行四邊形OABC的邊OC在y軸上,對(duì)角線AC,OB交于點(diǎn)D,函數(shù)的圖象經(jīng)過(guò)點(diǎn)和點(diǎn)D.(1)求k值和點(diǎn)D的坐標(biāo);(2)求平行四邊形OABC的周長(zhǎng).4.(2022·河南南陽(yáng)·八年級(jí)期中)如圖,已知平行四邊形ABCD的頂點(diǎn)A、C在反比例函數(shù)的圖象上,頂點(diǎn)B、D在軸上.已知點(diǎn)、.(1)直接寫(xiě)出點(diǎn)C、D的坐標(biāo);(2)求反比例函數(shù)的解析式;(3)求平行四邊形ABCD的對(duì)角線AC、BD的長(zhǎng);(4)求平行四邊形ABCD的面積S.5.(2021·湖南永州·九年級(jí)期中)如圖1,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形,點(diǎn)A的坐標(biāo)為,反比例函數(shù)在第一象限內(nèi)的圖像經(jīng)過(guò)點(diǎn)A,與BC相交于F.(1)若,求反比例函數(shù)的關(guān)系式.(2)若點(diǎn)F為BC的中點(diǎn),且△AOF的面積S=9,求OA的長(zhǎng)和點(diǎn)C的坐標(biāo);(3)在(2)的條件下,過(guò)點(diǎn)F作EF∥OB,交OA于點(diǎn)E(如圖2),點(diǎn)P為直線EF上的一個(gè)動(dòng)點(diǎn),連接PA,PO.是否存在這樣的點(diǎn)P、使以P、O、A為頂點(diǎn)的三角形是以O(shè)A為斜邊的直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.6.(2022·江蘇連云港·八年級(jí)期末)如圖1,已知,,平行四邊形的邊、分別與軸、軸交于點(diǎn)、,且點(diǎn)為中點(diǎn),雙曲線為常數(shù),上經(jīng)過(guò)、兩點(diǎn).(1)求的值;(2)如圖2,點(diǎn)是軸正半軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線,分別交反比例函數(shù)為常數(shù),圖像于點(diǎn),交反比例函數(shù)的圖像于點(diǎn),當(dāng)時(shí),求點(diǎn)坐標(biāo);(3)點(diǎn)在雙曲線上,點(diǎn)在軸上,若以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,試求出滿足要求的所有點(diǎn)的坐標(biāo).考點(diǎn)三反比例函數(shù)與矩形的綜合應(yīng)用例題:(2022·江蘇省錫山高級(jí)中學(xué)實(shí)驗(yàn)學(xué)校八年級(jí)期中)如圖1,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)B在反比例函數(shù)y=(k>0)的第一象限內(nèi)的圖像上,OA=6,OC=4,動(dòng)點(diǎn)P在y軸的右側(cè),且滿足S△PCO=S矩形OABC.(1)若點(diǎn)P在這個(gè)反比例函數(shù)的圖像上,求點(diǎn)P的坐標(biāo);(2)若點(diǎn)Q是平面內(nèi)一點(diǎn),使得以B、C、P、Q為頂點(diǎn)的四邊形是菱形,請(qǐng)你直接寫(xiě)出滿足條件的所有點(diǎn)Q的坐標(biāo).【變式訓(xùn)練】1.(2022·河南南陽(yáng)·八年級(jí)期末)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象和矩形ABCD在第一象限,AD平行于x軸,且,,點(diǎn)A的坐標(biāo)為(2,6).將矩形向下平移,若矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,則矩形的平移距離a的值為(
)A. B. C. D.2.(2022·浙江寧波·八年級(jí)期末)如圖,矩形OABC被三條直線分割成六個(gè)小矩形,若D、E是CO邊上的三等分點(diǎn),反比例函數(shù)剛好經(jīng)過(guò)小矩形的頂點(diǎn)F、G,若圖中的陰影矩形面積,則反比例系數(shù)k的值為_(kāi)_.3.(2022·福建泉州·八年級(jí)期末)如圖,矩形的邊、分別在軸、軸的正半軸上,點(diǎn)在反比例函數(shù)的圖象上,且.將矩形以點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)后得到矩形,函數(shù)的圖象剛好經(jīng)過(guò)的中點(diǎn),交于點(diǎn).(1)求該反比例函數(shù)關(guān)系式;(2)求的面積.4.(2022·四川雅安·九年級(jí)專(zhuān)題練習(xí))如圖,在矩形中,,,點(diǎn)是邊的中點(diǎn),反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn),交于點(diǎn).(1)求的值及直線的解析式;(2)在軸上找一點(diǎn),使的周長(zhǎng)最小,求此時(shí)點(diǎn)的坐標(biāo);(3)在(2)的條件下,求的面積.5.(2022·江蘇宿遷·八年級(jí)期末)如圖,矩形的頂點(diǎn)、分別在、軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,,動(dòng)點(diǎn)在軸的上方,且滿足.(1)若點(diǎn)在這個(gè)反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);(2)連接、,求的最小值;(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以、、、為頂點(diǎn)的四邊形是菱形,則請(qǐng)你直接寫(xiě)出滿足條件的所有點(diǎn)的坐標(biāo).6.(2022·全國(guó)·九年級(jí)單元測(cè)試)如圖,四邊形OABC是矩形,點(diǎn)A的坐標(biāo)為(0,6)點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B出發(fā),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.(1)當(dāng)t=1時(shí),請(qǐng)直接寫(xiě)出△BPQ的面積為;(2)當(dāng)△BPQ與△COQ相似時(shí),求t的值;(3)當(dāng)反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)P、Q兩點(diǎn)時(shí).①求k的值;②點(diǎn)M在x軸上,點(diǎn)N在反比例函數(shù)y=的圖象上,若以點(diǎn)M、N、P、Q為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出所有滿足條件的M的坐標(biāo).考點(diǎn)四反比例函數(shù)與菱形的綜合應(yīng)用例題:(2022·四川遂寧·八年級(jí)期末)如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)的圖像上,點(diǎn)D的坐標(biāo)為(4,3),設(shè)AB所在直線解析式為.(1)求反比例和一次函數(shù)解析式.(2)若將菱形ABCD沿x軸正方向平移m個(gè)單位,在平移中若反比例函數(shù)圖像與菱形的邊AD始終有交點(diǎn),求m的取值范圍.(3)在直線AB上是否存在M、N兩點(diǎn),使以MNOD四點(diǎn)的四邊形構(gòu)成矩形?若不存在,請(qǐng)說(shuō)明理由,若存在直接求出M、N(點(diǎn)M在點(diǎn)N的上方)兩點(diǎn)的坐標(biāo).【變式訓(xùn)練】1.(2022·江蘇·蘇州市胥江實(shí)驗(yàn)中學(xué)校八年級(jí)期中)圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為4的菱形頂點(diǎn)與原點(diǎn)重合,點(diǎn)在軸的正半軸上,點(diǎn)在函數(shù)的圖象上,________.2.(2022·江蘇南京·二模)如圖,菱形ABCD的邊BC在x軸上,頂點(diǎn)A,D分別在函數(shù),的圖像上.若,則A的坐標(biāo)為_(kāi)_____.3.(2022·貴州安順·中考真題)如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)在軸上,,兩點(diǎn)的坐標(biāo)分別為,,直線:與反比例函數(shù)的圖象交于,兩點(diǎn).(1)求該反比例函數(shù)的解析式及的值;(2)判斷點(diǎn)是否在該反比例函數(shù)的圖象上,并說(shuō)明理由.4.(2022·江蘇·蘇州市胥江實(shí)驗(yàn)中學(xué)校八年級(jí)期中)如圖1,菱形頂點(diǎn)在軸上,頂點(diǎn)在反比例函數(shù)上,邊交軸于點(diǎn),軸,,.5.(2022·浙江寧波·八年級(jí)期末)如圖,菱形ABCD的頂點(diǎn)A、B分別在y軸與x軸正半軸上,C、D在第一象限,軸,反比例函數(shù)的圖象經(jīng)過(guò)頂點(diǎn)D.(1)若,①求反比例函數(shù)的解析式;②證明:點(diǎn)C落在反比例函數(shù)的圖象上;(2)若,,求菱形ABCD的邊長(zhǎng).6.(2022·全國(guó)·九年級(jí)單元測(cè)試)如圖,菱形OABC的點(diǎn)B在y軸上,點(diǎn)C坐標(biāo)為(12,5),雙曲線的圖象經(jīng)過(guò)點(diǎn)A.(1)菱形OABC的邊長(zhǎng)為_(kāi)___;(2)求雙曲線的函數(shù)關(guān)系式;(3)①點(diǎn)B關(guān)于點(diǎn)O的對(duì)稱(chēng)點(diǎn)為D點(diǎn),過(guò)D作直線l垂直于y軸,點(diǎn)P是直線l上一個(gè)動(dòng)點(diǎn),點(diǎn)E在雙曲線上,當(dāng)P、E、A、B四點(diǎn)構(gòu)成平行四邊形時(shí),求點(diǎn)E的坐標(biāo);②將點(diǎn)P繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得點(diǎn)Q,當(dāng)點(diǎn)Q落在雙曲線上時(shí),求點(diǎn)Q的坐標(biāo).考點(diǎn)五反比例函數(shù)與正方形的綜合應(yīng)用例題:(2022·江蘇淮安·八年級(jí)期末)如圖,A、B分別是軸正半軸上和軸正半軸上的點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.(1)若點(diǎn)C坐標(biāo)為(2,3),則的值為_(kāi)_____;(2)若A、B兩點(diǎn)坐標(biāo)分別A(2,0),B(0,2);①則的值為_(kāi)_____;②此時(shí)點(diǎn)D______(填“在”、“不在”或者“不一定在”)該反比例函數(shù)的圖象上;(3)若C、D兩點(diǎn)都在函數(shù)的圖象上,直接寫(xiě)出點(diǎn)C的坐標(biāo)為_(kāi)_____.【變式訓(xùn)練】1.(2022·江蘇·星海實(shí)驗(yàn)中學(xué)八年級(jí)期末)如圖,是射線上一點(diǎn),過(guò)作軸于點(diǎn),以為邊在其右側(cè)作正方形,過(guò)的雙曲線交邊于點(diǎn),則的值為(
)A. B. C. D.2.(2022·黑龍江牡丹江·九年級(jí)期末)如圖,正方形ABCD的邊長(zhǎng)為3,AD邊在x軸負(fù)半軸上,反比例函數(shù)y=(x<0)的圖像經(jīng)過(guò)點(diǎn)B和CD邊中點(diǎn)E,則k的值為_(kāi)_____.3.(2021·江蘇·南通市八一中學(xué)九年級(jí)階段練習(xí))如圖,直線y=﹣2x+4與x軸,y軸分別相交于點(diǎn)A、B,四邊形ABCD是正方形,雙曲線在第一象限經(jīng)過(guò)點(diǎn)D,將正方形向下平移m個(gè)單位后,點(diǎn)C剛好落在雙曲線上,則m=________________.4.(2022·福建泉州·八年級(jí)期末)如圖,正方形ABCD的頂點(diǎn)A在x軸的負(fù)半軸上,頂點(diǎn)B在y軸的正半軸上,頂點(diǎn)C、D都在反比例函數(shù)圖象上,則點(diǎn)C的坐標(biāo)是______.5.(2022·江蘇揚(yáng)州·八年級(jí)期末)如圖,已知點(diǎn)在正比例函數(shù)圖像上,過(guò)點(diǎn)作軸于點(diǎn)B,四邊形ABCD是正方形,點(diǎn)D在反比例函數(shù)圖像上.(1)若點(diǎn)的橫坐標(biāo)為-2,求的值;(2)若設(shè)正方形ABCD的面積為m,試用含m的代數(shù)式表示k值.6.(2022·江蘇·射陽(yáng)縣實(shí)驗(yàn)初級(jí)中學(xué)八年級(jí)期中)如圖,在平面直角坐標(biāo)系中,B、C兩點(diǎn)在x軸的正半軸上,以線段BC為邊向上作正方形ABCD,頂點(diǎn)A在正比例函數(shù)y=2x的圖象上,反比例函數(shù)y=(x>0,k>0)的圖象經(jīng)過(guò)點(diǎn)A,且與邊CD相交于點(diǎn)E.(1)若BC=4,求點(diǎn)E的坐標(biāo);(2)連接AE,OE,若△AOE的面積為16,求k的值.7.(2022·全國(guó)·九年級(jí)課時(shí)練習(xí))如圖1,四邊形ABCD為正方形,點(diǎn)A在y軸上,點(diǎn)B在x軸上,且OA=6,OB=3,反比例函數(shù)在第一象限的圖象經(jīng)過(guò)正方形的頂點(diǎn)C.(1)求點(diǎn)C的坐標(biāo)和反比例函數(shù)的表達(dá)式;(2)如圖2,將正方形ABCD沿x軸向右平移m個(gè)單位長(zhǎng)度得到正方形,點(diǎn)恰好落在反比例函數(shù)的圖象上,求此時(shí)點(diǎn)的坐標(biāo);(3)在(2)的條件下,點(diǎn)P為x軸上一動(dòng)點(diǎn),平面內(nèi)是否存在點(diǎn)Q,使以點(diǎn)O、、P、Q為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.專(zhuān)題18反比例函數(shù)與幾何圖形的綜合應(yīng)用考點(diǎn)一反比例函數(shù)與三角形的綜合應(yīng)用考點(diǎn)二反比例函數(shù)與平行四邊形的綜合應(yīng)用考點(diǎn)三反比例函數(shù)與矩形的綜合應(yīng)用考點(diǎn)四反比例函數(shù)與菱形的綜合應(yīng)用考點(diǎn)五反比例函數(shù)與正方形的綜合應(yīng)用考點(diǎn)一反比例函數(shù)與三角形的綜合應(yīng)用例題:(2022·江西·崇仁縣第二中學(xué)二模)如圖,在等腰三角形AOB中,AO=AB,點(diǎn)O是平面直角坐標(biāo)系原點(diǎn),點(diǎn)A在反比例函數(shù)的圖象上,已知OA=5,OB=6.(1)求反比例函數(shù)的解析式;(2)過(guò)點(diǎn)A作AP垂直O(jiān)A,交反比例函數(shù)的圖象于點(diǎn)P,交x軸于點(diǎn)C.①求直線AC的解析式;②求點(diǎn)P的坐標(biāo).【答案】(1)反比例函數(shù)的解析式為y=(x>0);(2)①直線AC的解析式為y=-x+;②點(diǎn)P的坐標(biāo)為(,).【分析】(1)利用等腰三角形的性質(zhì)求出點(diǎn)A的坐標(biāo)即可解決問(wèn)題;(2)①利用相似三角形的判定和性質(zhì)求得CD,即可求得C的坐標(biāo),利用待定系數(shù)法即可求得直線AC的解析式;②解析式聯(lián)立成方程組,解方程組即可求得點(diǎn)P的坐標(biāo).(1)解:作AD⊥OB于D,∵AO=AB,OA=5,OB=6.∴OD=BD=3,∴AD==4,∴A(3,4),把A(3,4)代入y=(x>0),可得k=12,∴反比例函數(shù)的解析式為y=(x>0);(2)解:①∵AC⊥OA,∴△OAC是直角三角形,∵AD⊥OC,∴∠OAD+∠DAC=90°,∠OAD+∠DOA=90°,∴∠DAC=∠DOA,∴Rt△DAC∽R(shí)t△DOA,∴,∴AD2=OD?CD,即16=3?CD,∴CD=,∴OC=OD+CD=,∴C(,0),∴設(shè)直線AC的解析式為y=ax+b,把A、C的坐標(biāo)代入得,,解得,∴直線AC的解析式為y=-x+;②解得或,∴點(diǎn)P的坐標(biāo)為(,).【點(diǎn)睛】本題是反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,考查待定系數(shù)法求反比例函數(shù)以及一次函數(shù)的解析式,等腰三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是求得A的坐標(biāo).【變式訓(xùn)練】1.(2022·山東東營(yíng)·中考真題)如圖,是等腰直角三角形,直角頂點(diǎn)與坐標(biāo)原點(diǎn)重合,若點(diǎn)B在反比例函數(shù)的圖象上,則經(jīng)過(guò)點(diǎn)A的反比例函數(shù)表達(dá)式為_(kāi)___________.【答案】【分析】如圖所示,過(guò)點(diǎn)A作AC⊥x軸于C,過(guò)點(diǎn)B作BD⊥x軸于D,證明△ACO≌△ODB得到AC=OD,OC=BD,設(shè)點(diǎn)B的坐標(biāo)為(a,b),則點(diǎn)A的坐標(biāo)為(-b,a),再由點(diǎn)B在反比例函數(shù),推出,由此即可得到答案.【詳解】解:如圖所示,過(guò)點(diǎn)A作AC⊥x軸于C,過(guò)點(diǎn)B作BD⊥x軸于D,則∠ACO=∠ODB=90°,由題意得OA=OB,∠AOB=90°,∴∠CAO+∠COA=∠AOC+∠BOD=90°,∴∠CAO=∠DOB,∴△ACO≌△ODB(AAS),∴AC=OD,OC=BD,設(shè)點(diǎn)B的坐標(biāo)為(a,b),則AC=OD=a,OC=BD=b,∴點(diǎn)A的坐標(biāo)為(-b,a),∵點(diǎn)B在反比例函數(shù),∴,∴,∴,∴經(jīng)過(guò)點(diǎn)A的反比例函數(shù)表達(dá)式為,故答案為:.【點(diǎn)睛】本題主要考查了反比例函數(shù)與幾何綜合,全等三角形的性質(zhì)與判定,熟知相關(guān)知識(shí)是解題的關(guān)鍵.2.(2022·江蘇·淮安市淮安區(qū)教師發(fā)展中心學(xué)科研訓(xùn)處模擬預(yù)測(cè))如圖,把一個(gè)等腰直角三角形ACB放在平面直角坐標(biāo)系中,∠ACB=90°,點(diǎn)C(﹣2,0),點(diǎn)B在反比例函數(shù)的圖象上,且y軸平分∠BAC,則k的值是________.【答案】【分析】過(guò)點(diǎn)B作BD⊥x軸于D,在OA上截取OE=OC,連接CE,由等腰直角三角形的性質(zhì)可求∠CEO=45°,CE=2,由角平分線的性質(zhì)和外角的性質(zhì)可得∠ECA=∠OAC=22.5°,可證CE=AE=2,由“AAS”可證△OAC≌△DCB,可得AO=CD=2+2,OC=BD=2,可得點(diǎn)B坐標(biāo),即可求解.【詳解】解:如圖,過(guò)點(diǎn)B作BD⊥x軸于D,在OA上截取OE=OC,連接CE,∵點(diǎn)C(-2,0),∴CO=2,∴CO=EO=2,∴∠CEO=45°,CE=2,∵△BAC為等腰直角三角形,且∠ACB=90°,∴BC=AC,∠OCA+∠DCB=90°,∠CAB=45°,∵∠OCA+∠OAC=90°,∴∠OAC=∠BCD,在△OAC和△DCB中,∴△OAC≌△DCB(AAS),∴AO=CD,OC=BD=2,∵y軸平分∠BAC,∴∠CAO=22.5°,∵∠CEO=∠CEA+∠OAC=45°,∴∠ECA=∠OAC=22.5°,∴CE=AE=2,∴AO=2+2=CD,∴DO=2,∴點(diǎn)B坐標(biāo)為(2,-2),∵點(diǎn)B在反比例函數(shù)y=的圖象上,∴k=(-2)×2=-4,故答案為:-4.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)性質(zhì)以及全等三角形的判定與性質(zhì),求得B的坐標(biāo)是解題關(guān)鍵.3.(2022·陜西省西安高新逸翠園學(xué)校模擬預(yù)測(cè))如圖,平面直角坐標(biāo)系中,△OAB和△BCD都是等腰直角三角形,且∠A=∠C=90°,點(diǎn)B、D都在x軸上,點(diǎn)A、C都在反比例函數(shù)y=(x>0)的圖象上,則點(diǎn)C的橫坐標(biāo)為_(kāi)_______.【答案】##【分析】過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,過(guò)點(diǎn)C作AF⊥x軸于點(diǎn)F,設(shè)OE=m,則點(diǎn)A(m,m),點(diǎn)B(2m,0),再利用點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,求出m,點(diǎn)B的坐標(biāo);又設(shè)BF=n,,則點(diǎn)C(2m+n,n),再利用點(diǎn)C在反比例函數(shù)y=(x>0)的圖象,求出n,點(diǎn)C的坐標(biāo).【詳解】解:如圖,過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,過(guò)點(diǎn)C作AF⊥x軸于點(diǎn)F,∵△OAB是等腰直角三角形,∴OE=AE=BE,設(shè)OE=m,則點(diǎn)A(m,m),點(diǎn)B(2m,0),∵點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,∴,解得:(舍去),∴點(diǎn)B(2,0),同理∵△BCD是等腰直角三角形,∴BF=CF,設(shè)BF=n,則點(diǎn)C(2+n,n).∵點(diǎn)C在反比例函數(shù)y=(x>0)的圖象上,∴,解得:(舍去),∴.故答案為:.【點(diǎn)睛】本題考查反比例函數(shù)與幾何綜合,等腰直角三角形的性質(zhì),靈活運(yùn)用等腰直角三角形的性質(zhì)是解題的關(guān)鍵.4.(2022·貴州黔東南·中考真題)如圖,在平面直角坐標(biāo)系中,等腰直角三角形的斜邊軸于點(diǎn),直角頂點(diǎn)在軸上,雙曲線經(jīng)過(guò)邊的中點(diǎn),若,則______.【答案】【分析】根據(jù)是等腰直角三角形,軸,得到是等腰直角三角形,再根據(jù)求出A點(diǎn),C點(diǎn)坐標(biāo),根據(jù)中點(diǎn)公式求出D點(diǎn)坐標(biāo),將D點(diǎn)坐標(biāo)代入反比例函數(shù)解析式即可求得k.【詳解】∵是等腰直角三角形,軸.∴;.∴是等腰直角三角形.∴.故:,..將D點(diǎn)坐標(biāo)代入反比例函數(shù)解析式..故答案為:.【點(diǎn)睛】本題考查平面幾何與坐標(biāo)系綜合,反比例函數(shù)解析式;本體解題關(guān)鍵是得到是等腰直角三角形,用中點(diǎn)公式算出D點(diǎn)坐標(biāo).5.(2022·貴州銅仁·九年級(jí)期末)如圖1,點(diǎn)A(0,8)、點(diǎn)B(2,a)在直線y=﹣2x+b上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)B.(1)求a和k的值;(2)將線段AB向右平移m個(gè)單位長(zhǎng)度(m>0),得到對(duì)應(yīng)線段CD,連接AC、BD.①如圖2,當(dāng)m=3時(shí),過(guò)D作DF⊥x軸于點(diǎn)F,交反比例函數(shù)圖象于點(diǎn)E,求的值;②在線段AB運(yùn)動(dòng)過(guò)程中,連接BC,若△BCD是以BC為腰的等腰三角形,求所有滿足條件的m的值.【答案】(1)a=4,k=8(2)①;②4或5【分析】(1)先將點(diǎn)A坐標(biāo)代入直線AB的解析式中,求出a,進(jìn)而求出點(diǎn)B坐標(biāo),再將點(diǎn)B坐標(biāo)代入反比例函數(shù)解析式中即可得出結(jié)論;(2)①先確定出點(diǎn)D(5,4),進(jìn)而求出點(diǎn)E坐標(biāo),進(jìn)而求出DE,EF,即可得出結(jié)論;②先表示出點(diǎn)C,D坐標(biāo),再分兩種情況:Ⅰ、當(dāng)BC=CD時(shí),判斷出點(diǎn)B在AC的垂直平分線上,即可得出結(jié)論;Ⅱ、當(dāng)BC=BD時(shí),先表示出BC,用BC=BD建立方程求解即可得出結(jié)論.(1)解:∵點(diǎn)A(0,8)在直線y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直線AB的解析式為y=﹣2x+8,將點(diǎn)B(2,a)代入直線AB的解析式y(tǒng)=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),將B(2,4)代入反比例函數(shù)解析式y(tǒng)=(x>0)中,得k=xy=2×4=8;(2)解:①由(1)知,B(2,4),k=8,∴反比例函數(shù)解析式為y=,當(dāng)m=3時(shí),∴將線段AB向右平移3個(gè)單位長(zhǎng)度,得到對(duì)應(yīng)線段CD,∴D(2+3,4),即:D(5,4),∵DF⊥x軸于點(diǎn)F,交反比例函數(shù)y=的圖象于點(diǎn)E,∴E(5,),∴DE=4﹣=,EF=,∴==;②如圖,∵將線段AB向右平移m個(gè)單位長(zhǎng)度(m>0),得到對(duì)應(yīng)線段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D(m+2,4),∵△BCD是以BC為腰的等腰三角形,∴Ⅰ、當(dāng)BC=CD時(shí),∴BC=AB,∴點(diǎn)B在線段AC的垂直平分線上,∴m=2×2=4,Ⅱ、當(dāng)BC=BD時(shí),∵B(2,4),C(m,8),∴BC=,∴=m,∴m=5,即:△BCD是以BC為腰的等腰三角形,滿足條件的m的值為4或5.【點(diǎn)睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平移的性質(zhì),等腰三角形的性質(zhì),線段的垂直平分線的判定和性質(zhì),用方程的思想解決問(wèn)題是解本題的關(guān)鍵.6.(2022·河南新鄉(xiāng)·八年級(jí)期中)如圖,在平面直角坐標(biāo)系中,點(diǎn),分別在反比例函數(shù)和的圖象上,軸于點(diǎn),軸于點(diǎn),是線段的中點(diǎn),,.(1)求反比例函數(shù)的表達(dá)式;(2)連接,,,求的面積;(3)是線段上的一個(gè)動(dòng)點(diǎn),是線段上的一個(gè)動(dòng)點(diǎn),試探究是否存在點(diǎn),使得是等腰直角三角形?若存在,求所有符合條件點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)(2)5(3)存在,或或【分析】(1)先求出點(diǎn)的坐標(biāo),利用待定系數(shù)法可求反比例函數(shù)的表達(dá)式;(2)分別算出,,的面積,利用即可得到答案;(3)分三種情況,當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),利用等腰三角形的性質(zhì)即可得到答案.(1)解:由題意可知,∵點(diǎn)在反比例函數(shù)的圖象上,∴,∵是線段的中點(diǎn),∴,∵,∴點(diǎn)的坐標(biāo)為,∴,∴反比例函數(shù)的表達(dá)式為;(2)解:∵,,,∴;(3)解:存在分三種情況,∵,∴直線的表達(dá)式為.①如圖1,當(dāng),時(shí),設(shè)點(diǎn),則∵∴平分.∴,解得∴∴;②如圖2,當(dāng),時(shí),設(shè)點(diǎn).∵平分,∴,∴∴∴∴;③如圖3,當(dāng),時(shí),點(diǎn)與點(diǎn)重合,∴,∴,∴,綜上所述,存在點(diǎn)使得是等腰直角三角形,其坐標(biāo)為或或.【點(diǎn)睛】本題主要考查了待定系數(shù)法求反比例函數(shù)的解析式,三角形的面積以及等腰三角形的性質(zhì),解題的關(guān)鍵是分三種情況求出點(diǎn)的坐標(biāo).考點(diǎn)二反比例函數(shù)與平行四邊形的綜合應(yīng)用例題:(2022·河南南陽(yáng)·八年級(jí)期中)已知,如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,0),C(-1,2)是平行四邊形OABC的兩個(gè)頂點(diǎn),反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn)B.(1)求出反比例函數(shù)的表達(dá)式;(2)將平行四邊形OABC沿著x軸翻折,點(diǎn)C落在點(diǎn)D處,判斷點(diǎn)D是否在反比例函數(shù)的圖像上,并說(shuō)明理由;(3)在x軸上是否存在一點(diǎn)P,使是以O(shè)C為腰的等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)(2)點(diǎn)D在反比例函數(shù)的圖像上,理由見(jiàn)解析(3)(,0)或(,0)或P(-2,0)【分析】(1)過(guò)C作CE⊥x軸于E,過(guò)B作BF⊥x軸于F,證明△CEO≌△BFA得到OE=AF,CE=BF,求出點(diǎn)B坐標(biāo)即可求得m值;(2)根據(jù)翻折性質(zhì)求得點(diǎn)D坐標(biāo),將點(diǎn)D坐標(biāo)代入反比例函數(shù)解析式中判斷即可;(3)先求出OC,分OP=OC、CP=OC兩種情況求解即可.(1)解:過(guò)C作CE⊥x軸于E,過(guò)B作BF⊥x軸于F,則∠CEO=∠BFA=90°,∵四邊形OABC是平行四邊形,∴OCAB,OC=AB,∴∠COE=∠BAF,∴△CEO≌△BFA(AAS),∴OE=AF,CE=BF,∵A(2,0),C(-1,2),∴AF=OE=1,BF=CE=2,OA=2,∴OF=OA-AF=1,則點(diǎn)B坐標(biāo)為(1,2),將點(diǎn)B(1,2)代入,得:m=2,∴反比例函數(shù)的表達(dá)式為;(2)解:點(diǎn)D在反比例函數(shù)的圖像上,理由為:根據(jù)翻折性質(zhì)得點(diǎn)D坐標(biāo)為(-1,-2),∵當(dāng)x=-1時(shí),=-2,∴點(diǎn)D在反比例函數(shù)的圖像上;(3)解:存在,如圖,∴,當(dāng)OP=OC時(shí),OP=,則P1(,0)或P2(,0),當(dāng)CP=OC時(shí),OP3=2OE=2,則點(diǎn)P3(-2,0),綜上,滿足條件的點(diǎn)P坐標(biāo)為(,0)或(,0)或P(-2,0).【點(diǎn)睛】本題考查反比例函數(shù)與幾何圖形的綜合,涉及平行四邊形的性質(zhì)、反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)解析式、全等三角形的判定與性質(zhì)、翻折性質(zhì)、等腰三角形的性質(zhì)、坐標(biāo)與圖形等知識(shí),熟練掌握相關(guān)知識(shí)的聯(lián)系與運(yùn)用,利用數(shù)形結(jié)合和分類(lèi)討論思想求解是解題的關(guān)鍵.【變式訓(xùn)練】1.(2022·重慶·巴川初級(jí)中學(xué)校九年級(jí)期末)如圖,平行四邊形ABCD的BC邊過(guò)原點(diǎn)O,頂點(diǎn)D在x軸上,反比例函數(shù)的圖象過(guò)AD邊上的A,E兩點(diǎn),已知平行四邊形ABCD的面積為8,,則k的值為_(kāi)_____.【答案】2【分析】根據(jù)反比例函數(shù)圖象上點(diǎn)的特征,利用平行線分線段成比例,及三角形的面積列出方程求解.【詳解】解:過(guò)點(diǎn)A作AF⊥x軸于點(diǎn)F,過(guò)點(diǎn)E作EH⊥x軸于點(diǎn)H,則AFEH,則:,△DEH∽△DAF,∴,設(shè)A(x,y),則E(3x,y),則AF=y(tǒng),OF=x,OH=3x,EH=y(tǒng),∴FH=2x,DH=x,OD=4x,∵平行四邊形ABCD的面積為8m,則△AOD的面積是4,則△ODE的面積是,∴×y×4x=,∴xy=2,∴k=xy=2.故答案為:2.【點(diǎn)睛】本題考查看反比例函數(shù)的k的意義,結(jié)合平行線分線段成比例列方程是解題的關(guān)鍵.2.(2022·福建泉州·八年級(jí)期中)如圖,點(diǎn)D是平行四邊形內(nèi)一點(diǎn),軸,軸,且,,,若反比例函數(shù)的圖象經(jīng)過(guò)A、D兩點(diǎn),則k的值是______.【答案】12【分析】作AM⊥y軸于M,延長(zhǎng)BD,交AM于E,設(shè)BC與y軸的交點(diǎn)為N,證明△AOM≌△CBD(AAS),得出OM=BD=2,根據(jù)△ABD的面積求出AE=4,設(shè)D點(diǎn)橫坐標(biāo)為m,表示出D(m,6),則A點(diǎn)坐標(biāo)為(m+4,2),據(jù)反比例函數(shù)的定義得出關(guān)于m的方程,即可求出m和k的值.【詳解】解:作AM⊥y軸于M,延長(zhǎng)BD,交AM于E,設(shè)BC與y軸的交點(diǎn)為N,如下圖所示:∵四邊形OABC是平行四邊形,∴OABC,OA=BC,∴∠AOM=∠CNM,∵BDy軸,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD與x軸平行,BD與y軸平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=2,∵S△ABD=BD?AE=4,∴AE=4,∵∠ADB=135°,∴∠EDA=45°,∴△ADE是等腰直角三角形,∴DE=AE=4,∴D點(diǎn)縱坐標(biāo)為6,設(shè)D點(diǎn)橫坐標(biāo)為m,∴D點(diǎn)坐標(biāo)為(m,6),A點(diǎn)坐標(biāo)為(m+4,2),∵反比例函數(shù)圖象經(jīng)過(guò)A、D兩點(diǎn),∴k=6m=(m+4)×2,解得m=2,k=12.故答案為:12.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,反比例函數(shù)與平行四邊形的綜合,表示出A、D的坐標(biāo)是解決本題的關(guān)鍵.3.(2021·河北保定·九年級(jí)期末)如圖,平行四邊形OABC的邊OC在y軸上,對(duì)角線AC,OB交于點(diǎn)D,函數(shù)的圖象經(jīng)過(guò)點(diǎn)和點(diǎn)D.(1)求k值和點(diǎn)D的坐標(biāo);(2)求平行四邊形OABC的周長(zhǎng).【答案】(1),D(6,10);(2)【分析】(1)將A點(diǎn)坐標(biāo)代入反比例函數(shù)解析式,即可求出k的值,從而得到反比例函數(shù)解析式為.根據(jù)題意可知,由平行四邊形的性質(zhì)可知,代入反比例函數(shù)解析式即可求出,即得出D點(diǎn)坐標(biāo);(2)由A點(diǎn)坐標(biāo)可求出OA的長(zhǎng),再根據(jù)平行四邊形的性質(zhì)可得,即可求出OC的長(zhǎng),最后根據(jù)平行四邊形的周長(zhǎng)公式計(jì)算即可.(1)∵函數(shù)的圖象經(jīng)過(guò)點(diǎn),∴,解得:.∴反比例函數(shù)解析式為.∵平行四邊形OABC的邊OC在y軸上,且對(duì)角線AC,OB交于點(diǎn)D,∴,∴.∵函數(shù)的圖象經(jīng)過(guò)點(diǎn)D,∴,∴D(6,10);(2)∵,∴.∵,,且∴.∴,∴.【點(diǎn)睛】本題考查反比例函數(shù)與平行四邊形的綜合.利用數(shù)形結(jié)合的思想是解題關(guān)鍵.4.(2022·河南南陽(yáng)·八年級(jí)期中)如圖,已知平行四邊形ABCD的頂點(diǎn)A、C在反比例函數(shù)的圖象上,頂點(diǎn)B、D在軸上.已知點(diǎn)、.(1)直接寫(xiě)出點(diǎn)C、D的坐標(biāo);(2)求反比例函數(shù)的解析式;(3)求平行四邊形ABCD的對(duì)角線AC、BD的長(zhǎng);(4)求平行四邊形ABCD的面積S.【答案】(1)C(3,-2);D(5,0)(2)(3);(4)【分析】(1)由題意,點(diǎn)A、C,點(diǎn)B、D關(guān)于原點(diǎn)對(duì)稱(chēng),即可得出答案;(2)直接將點(diǎn)代入反比例函數(shù),即可求出解析式;(3)直接根據(jù)B、D的坐標(biāo)得到BD的長(zhǎng),過(guò)點(diǎn)A作AE⊥x軸于E,有勾股定理可求出OA的長(zhǎng),即可得出AC的長(zhǎng);(4)由,即可求解.(1)解:由題意點(diǎn)A、C,點(diǎn)B、D關(guān)于原點(diǎn)對(duì)稱(chēng),且、,∴C(3,-2);D(5,0).(2)∵反比例函數(shù)圖象經(jīng)過(guò)點(diǎn)(-3,2),∴反比例函數(shù)的解析式為.(3);過(guò)點(diǎn)A作AE⊥x軸于E,在Rt△AEO中,,∴.(4).【點(diǎn)睛】本題考查反比例函數(shù),平行四邊形,熟練運(yùn)用反比例函數(shù)的對(duì)稱(chēng)性是解題的關(guān)鍵.5.(2021·湖南永州·九年級(jí)期中)如圖1,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形,點(diǎn)A的坐標(biāo)為,反比例函數(shù)在第一象限內(nèi)的圖像經(jīng)過(guò)點(diǎn)A,與BC相交于F.(1)若,求反比例函數(shù)的關(guān)系式.(2)若點(diǎn)F為BC的中點(diǎn),且△AOF的面積S=9,求OA的長(zhǎng)和點(diǎn)C的坐標(biāo);(3)在(2)的條件下,過(guò)點(diǎn)F作EF∥OB,交OA于點(diǎn)E(如圖2),點(diǎn)P為直線EF上的一個(gè)動(dòng)點(diǎn),連接PA,PO.是否存在這樣的點(diǎn)P、使以P、O、A為頂點(diǎn)的三角形是以O(shè)A為斜邊的直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)(2)OA=5,(3)存在,P(4,2)或P(-1,2)【分析】(1)把點(diǎn)A坐標(biāo)代入解析式,即可求解;(2)根據(jù)反比函數(shù)的比例系數(shù)的幾何意義可得,從而得到,,進(jìn)而得到點(diǎn)F的坐標(biāo)為(6a,2a),可得到,求出a,即可求解;(3)先證得四邊形OBFE為平行四邊形,可求出點(diǎn)E,然后分兩種情況討論,即可求解.(1)解∶∵點(diǎn)A的坐標(biāo)為,,∴點(diǎn)A的坐標(biāo)為,把代入得:k=48,∴反比例函數(shù)的關(guān)系式為;(2)解:分別過(guò)點(diǎn)A,F(xiàn),C作x軸的垂線交x軸于點(diǎn)D,E,G,AD交OF于點(diǎn)H.∵點(diǎn)A,F(xiàn)在反比例函數(shù)圖像上,∴又,,∵△AOF的面積S=9,四邊形OACB是平行四邊形,,,∵點(diǎn)A的坐標(biāo)為,AC∥x軸,∴點(diǎn)C的縱坐標(biāo)為4a,點(diǎn)F為BC的中點(diǎn),k=12a2,∴點(diǎn)F的縱坐標(biāo)為2a,∴點(diǎn)F的橫坐標(biāo)為,點(diǎn)F的坐標(biāo)為(6a,2a),,解得a=1,∴點(diǎn)A(3,4),F(xiàn)(6,2),OD=3
AD=4,OA=5,∵,∴AC=OB=,∴點(diǎn),即;(3)解:存在,根據(jù)題意得:∠APO=90°,∵四邊形OACB為平行四邊形,∴OE∥BF,OA=BC,∵EF∥OB,∴四邊形OBFE為平行四邊形,∴OE=BF,∵BF=CF,∴AE=OE=,∴PE=,由(2)得:點(diǎn)A(3,4),∴點(diǎn)E,∴ON=,EN=2,如圖,當(dāng)點(diǎn)P在線段OA的右側(cè)上時(shí),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,過(guò)點(diǎn)E作EN⊥x軸于點(diǎn)N,∵EN⊥x軸,PM⊥x軸,∴EN∥PM,∴四邊形ENMP為平行四邊形,∴PE=MN=,PM=EN=2,∴OM=4,∴點(diǎn)P(4,2);如圖,當(dāng)點(diǎn)P在線段OA的作側(cè)上時(shí),過(guò)點(diǎn)P作PT⊥x軸于點(diǎn)T,過(guò)點(diǎn)E作ES⊥x軸于點(diǎn)S,同理:四邊形PEST為平行四邊形,∴PT=ES=2,TS=PE=,OS=,∴OT=1,∴點(diǎn)P(-1,2);綜上所述,點(diǎn)P的坐標(biāo)為(4,2)或(-1,2).【點(diǎn)睛】本題主要考查了反比例函數(shù)的圖像和性質(zhì),平行四邊形的判定和性質(zhì),直角三角形的性質(zhì),熟練掌握反比例函數(shù)的圖像和性質(zhì),平行四邊形的判定和性質(zhì),利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.6.(2022·江蘇連云港·八年級(jí)期末)如圖1,已知,,平行四邊形的邊、分別與軸、軸交于點(diǎn)、,且點(diǎn)為中點(diǎn),雙曲線為常數(shù),上經(jīng)過(guò)、兩點(diǎn).(1)求的值;(2)如圖2,點(diǎn)是軸正半軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線,分別交反比例函數(shù)為常數(shù),圖像于點(diǎn),交反比例函數(shù)的圖像于點(diǎn),當(dāng)時(shí),求點(diǎn)坐標(biāo);(3)點(diǎn)在雙曲線上,點(diǎn)在軸上,若以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,試求出滿足要求的所有點(diǎn)的坐標(biāo).【答案】(1)4(2)(3)或或【分析】(1)過(guò)點(diǎn)D作DM⊥y軸于點(diǎn)M,根據(jù)ED=EA,△EDM≌△EAO,得到AO=DM=1,從而得到D(1,k),是點(diǎn)A向右平移2個(gè)單位,向上平移k個(gè)單位得到,將點(diǎn)B(0,-2)作同樣的平移即可得到點(diǎn)C(2,-2+k),根據(jù)反比例函數(shù)的性質(zhì),得到k=2(-2+k),求解即可.(2)根據(jù)(1)可確定點(diǎn)C(2,2),確定直線BC解析式為y=2x-2,從而確定點(diǎn)F(1,0),過(guò)點(diǎn)F作FH⊥MN于點(diǎn)H,根據(jù)FM=FN,得到MH=HN即,設(shè)點(diǎn)G(0,t),則,構(gòu)造等式,求解即可.(3)根據(jù)點(diǎn)A(-1,0),B(0,-2),設(shè)Q(0,n),P(m,),運(yùn)用平移思想,分A平移得到Q和A平移得到P兩種情形計(jì)算即可.(1)如圖1,過(guò)點(diǎn)D作DM⊥y軸于點(diǎn)M,∵A(-1,0),∴OA=1.∵ED=EA,∠DME=∠AOE=90°,∠DEM=∠AEO,∴△EDM≌△EAO,∴AO=DM=1,∵點(diǎn)D在第一象限,且在反比例函數(shù)上,∴D(1,k).∵四邊形ABCD是平行四邊形,∴D(1,k)是點(diǎn)A向右平移2個(gè)單位,向上平移k個(gè)單位得到,∴將點(diǎn)B(0,-2)作同樣的平移即可得到點(diǎn)C(2,-2+k),∴k=2(-2+k),解得k=4.(2)如圖2,連接FM、FN.根據(jù)(1)可確定點(diǎn)C(2,2),∵點(diǎn)B(0,-2),∴設(shè)直線BC的解析式為y=kx-2,∴2=2k-2,解得k=2,∴直線BC解析式為y=2x-2,∴2x-2=0,解得x=1,∴點(diǎn)F(1,0),過(guò)點(diǎn)F作FH⊥MN于點(diǎn)H,∴H的橫坐標(biāo)為1,,根據(jù)FM=FN,∴MH=HN即,設(shè)點(diǎn)G(0,t),則,∴,∴,解得t=,故點(diǎn)G坐標(biāo)為(0,).(3)∵點(diǎn)A(-1,0),B(0,-2),設(shè)Q(0,n),P(m,),∵四邊形ABPQ是平行四邊形,∴平行四邊形的對(duì)邊平行且相等,當(dāng)A平移得到Q時(shí),∵點(diǎn)A(-1,0),Q(0,n),∴點(diǎn)A向右平移1個(gè)單位,當(dāng)n>0時(shí),向上平移n個(gè)單位得到Q,如圖3所示,∴點(diǎn)B向右平移1個(gè)單位,向上平移n個(gè)單位得到P,∵B(0,-2),∴點(diǎn)P(1,-2+n),∵P在反比例函數(shù)上,∴1×(-2+n)=4,解得n=6,此時(shí)點(diǎn)Q(0,6);當(dāng)n<0時(shí),向下平移|n|個(gè)單位得到Q,如圖4所示,∴點(diǎn)B向右平移1個(gè)單位,向下平移|n|個(gè)單位得到P,∵B(0,-2),∴點(diǎn)P(1,-2+|n|),∵P在反比例函數(shù)上,∴1×(-2+|n|)=4,解得n=-6,n=6(舍去),此時(shí)點(diǎn)Q(0,-6);當(dāng)A平移得到P時(shí),∵點(diǎn)A(-1,0)平移得到P(m,),則B(0,-2)平移得到Q(0,n),∴m=-1,故點(diǎn)P(-1,-4),即點(diǎn)A向下平移4個(gè)單位,當(dāng)點(diǎn)B向下平移4個(gè)單位,得到(0,-6),當(dāng)點(diǎn)B向上平移4個(gè)單位,得到(0,2),如圖5所示,此時(shí)點(diǎn)Q(0,-6)或(0,2)綜上所述,點(diǎn)Q的坐標(biāo)為(0,6)或(0,-6)或(0,2).【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì),反比例函數(shù)的解析式和性質(zhì),分類(lèi)思想,平移思想,熟練掌握待定系數(shù)法,反比例函數(shù)的性質(zhì),平行四邊形的性質(zhì),平移思想是解題的關(guān)鍵.考點(diǎn)三反比例函數(shù)與矩形的綜合應(yīng)用例題:(2022·江蘇省錫山高級(jí)中學(xué)實(shí)驗(yàn)學(xué)校八年級(jí)期中)如圖1,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)B在反比例函數(shù)y=(k>0)的第一象限內(nèi)的圖像上,OA=6,OC=4,動(dòng)點(diǎn)P在y軸的右側(cè),且滿足S△PCO=S矩形OABC.(1)若點(diǎn)P在這個(gè)反比例函數(shù)的圖像上,求點(diǎn)P的坐標(biāo);(2)若點(diǎn)Q是平面內(nèi)一點(diǎn),使得以B、C、P、Q為頂點(diǎn)的四邊形是菱形,請(qǐng)你直接寫(xiě)出滿足條件的所有點(diǎn)Q的坐標(biāo).【答案】(1)點(diǎn)P的坐標(biāo)為(2)點(diǎn)Q的坐標(biāo)為(11,)或(11,)或(-1,)或(-1,)【分析】(1)首先根據(jù)點(diǎn)B坐標(biāo),確定反比例函數(shù)的解析式,設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0),根據(jù)S△PCO=S矩形OABC構(gòu)建方程,即可求解;(2)分兩種情形:當(dāng)四邊形CBQP是菱形時(shí),當(dāng)四邊形CBPQ是菱形時(shí),分別求解,即可解決問(wèn)題.(1)解:∵四邊形OABC是矩形,OA=6,OC=4,∴點(diǎn)B的坐標(biāo)為(6,4),∵點(diǎn)B在反比例函數(shù)y=(k>0)的第一象限內(nèi)的圖像上,∴,∴反比例函數(shù)的解析式為y=,設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0),∵S△PCO=S矩形OABC,∴,即,∵點(diǎn)P在這個(gè)反比例函數(shù)的圖像上,∴點(diǎn)P的縱坐標(biāo)為,∴點(diǎn)P的坐標(biāo)為;(2)解:由(1)可知點(diǎn)P的橫坐標(biāo)為5,∴設(shè)點(diǎn)Q的坐標(biāo)為(a,b),點(diǎn)P的坐標(biāo)為(5,c),分兩種情況:當(dāng)四邊形CBQP是菱形時(shí),如圖2,由菱形和矩形的性質(zhì)可知,PC=BC=OA=6,∴,即,解得,∴點(diǎn)P的坐標(biāo)為(5,)或(5,),∵,∴點(diǎn)Q的縱坐標(biāo)為,∵PQ=PC=6,∴,解得,∴點(diǎn)Q的坐標(biāo)為(11,)或(11,);②當(dāng)四邊形CBPQ是菱形時(shí),如圖3,由菱形和矩形的性質(zhì)可知,PB=BC=OA=6,∴,即,解得,∴點(diǎn)P的坐標(biāo)為(5,)或(5,),∵,∴點(diǎn)Q的縱坐標(biāo)為,∵PQ=BC=6,∴,解得,∴點(diǎn)Q的坐標(biāo)為(-1,)或(-1,);綜上,點(diǎn)Q的坐標(biāo)為(11,)或(11,)或(-1,)或(-1,).【點(diǎn)睛】本題考查反比例函數(shù)綜合問(wèn)題、矩形的性質(zhì)、菱形的判定和性質(zhì)、三角形的面積等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用分類(lèi)討論的思想解決問(wèn)題.【變式訓(xùn)練】1.(2022·河南南陽(yáng)·八年級(jí)期末)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象和矩形ABCD在第一象限,AD平行于x軸,且,,點(diǎn)A的坐標(biāo)為(2,6).將矩形向下平移,若矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,則矩形的平移距離a的值為(
)A. B. C. D.【答案】B【分析】如圖,根據(jù)矩形的性質(zhì)以及平移的性質(zhì),得到平移后A與C在反比例函數(shù)圖象上,從而根據(jù)反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征解決此題.【詳解】解:如圖.由題意知,矩形平移到圖示的位置時(shí),矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象.∵AB=2,AD=4,平移前點(diǎn)A的坐標(biāo)為(2,6),∴平移后A坐標(biāo)為(2,6-a),平移后點(diǎn)C的坐標(biāo)為C(6,4-a).∴2(6-a)=6(4-a).∴a=3.故選:B.【點(diǎn)睛】本題主要考查反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征、矩形的性質(zhì)、平移,熟練掌握反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征、矩形的性質(zhì)、平移的性質(zhì)是解決本題的關(guān)鍵.2.(2022·浙江寧波·八年級(jí)期末)如圖,矩形OABC被三條直線分割成六個(gè)小矩形,若D、E是CO邊上的三等分點(diǎn),反比例函數(shù)剛好經(jīng)過(guò)小矩形的頂點(diǎn)F、G,若圖中的陰影矩形面積,則反比例系數(shù)k的值為_(kāi)_.【答案】10【分析】根據(jù)題意求得,進(jìn)而即可根據(jù)反比例函數(shù)系數(shù)k的幾何意義求得k的值.【詳解】是CO邊上的三等分點(diǎn),,,反比例函數(shù)剛好經(jīng)過(guò)小矩形的頂點(diǎn),,故答案為:10.【點(diǎn)睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,矩形的面積,求得矩形OAGD的面積是關(guān)鍵.3.(2022·福建泉州·八年級(jí)期末)如圖,矩形的邊、分別在軸、軸的正半軸上,點(diǎn)在反比例函數(shù)的圖象上,且.將矩形以點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)后得到矩形,函數(shù)的圖象剛好經(jīng)過(guò)的中點(diǎn),交于點(diǎn).(1)求該反比例函數(shù)關(guān)系式;(2)求的面積.【答案】(1)(2)【分析】(1)根據(jù)題意得出點(diǎn)B的坐標(biāo)為(2,),進(jìn)一步求得N(2+,2),代入曲線方程中即可得出k的值,便可得出反比例函數(shù)的解析式;(2)根據(jù)k的值可得出點(diǎn)M、點(diǎn)B的坐標(biāo),根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出S△OBM=S△AOB+S梯形ABMD-S△DOM=S梯形ABMD,故可得出△OBM的面積.(1)矩形的邊、分別在軸、軸的正半軸上,點(diǎn)在反比例函數(shù)的圖象上,且,點(diǎn)的坐標(biāo)為,,將矩形以點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)后得到矩形,,,,函數(shù)的圖象剛好經(jīng)過(guò)的中點(diǎn),,,,解得,反比例函數(shù)的解析式為;(2),,,把代入得,,,,.【點(diǎn)睛】本題考查了待定系數(shù)法求反比例函數(shù)的解析式,矩形的性質(zhì),坐標(biāo)與圖形的變化-旋轉(zhuǎn),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,反比例函數(shù)系數(shù)k的幾何意義,求得B、M的坐標(biāo)是解題的關(guān)鍵.4.(2022·四川雅安·九年級(jí)專(zhuān)題練習(xí))如圖,在矩形中,,,點(diǎn)是邊的中點(diǎn),反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn),交于點(diǎn).(1)求的值及直線的解析式;(2)在軸上找一點(diǎn),使的周長(zhǎng)最小,求此時(shí)點(diǎn)的坐標(biāo);(3)在(2)的條件下,求的面積.【答案】(1),直線解析式為(2)的周長(zhǎng)最小時(shí),(3)【分析】(1)先求出D點(diǎn)坐標(biāo),然后再代入反比例函數(shù)解析式可求得k;然后再確定點(diǎn)E得坐標(biāo),再通過(guò)待定系數(shù)法即可解答;(2)先求出關(guān)于軸對(duì)稱(chēng)點(diǎn)為,連接D′E交x軸于點(diǎn)P,此時(shí)△PDE周長(zhǎng)最小,再運(yùn)用待定系數(shù)法求得直線的解析式,直線與x軸的交點(diǎn)即為P點(diǎn)坐標(biāo);(3)先求出直線DE與x軸交點(diǎn)Q的坐標(biāo),再求出PE的長(zhǎng),然后結(jié)合點(diǎn)D、點(diǎn)E的坐標(biāo)可求得、,最后根據(jù)求解即可.(1)解:∵,,∴.又∵點(diǎn)是邊的中點(diǎn),∴,∴
反比例函數(shù)解析式為,∵為上一點(diǎn),得.∴,∴,設(shè)直線解析式為得:,解得,∴直線解析式為.(2)解:關(guān)于軸對(duì)稱(chēng)點(diǎn)為,連接D′E交x軸于點(diǎn)P,此時(shí)△PDE周長(zhǎng)最小,設(shè)直線解析式為得,解得,∴直線解析式為
∴直線與軸交點(diǎn)為,∴的周長(zhǎng)最小時(shí),.(3)解:直線解析式為,設(shè)其與軸的交點(diǎn)為,當(dāng)y2=0,可得x=6∴的坐標(biāo)為,
∵,∴,又∵,,∴,∴
,∴.【點(diǎn)睛】本題屬于反比例綜合題,主要考查了反比例函數(shù)解析式、最短路徑以及三角形的面積等知識(shí)點(diǎn),掌握數(shù)形結(jié)合思想成為解答本題的關(guān)鍵.5.(2022·江蘇宿遷·八年級(jí)期末)如圖,矩形的頂點(diǎn)、分別在、軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,,動(dòng)點(diǎn)在軸的上方,且滿足.(1)若點(diǎn)在這個(gè)反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);(2)連接、,求的最小值;(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以、、、為頂點(diǎn)的四邊形是菱形,則請(qǐng)你直接寫(xiě)出滿足條件的所有點(diǎn)的坐標(biāo).【答案】(1)(2)(3),,或【分析】(1)由矩形的性質(zhì)可得出點(diǎn)的坐標(biāo),利用反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征可求出的值,進(jìn)而可得出反比例函數(shù)解析式,由可求出點(diǎn)的縱坐標(biāo),再利用反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征可求出點(diǎn)的坐標(biāo);(2)作點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn),連接'交直線于點(diǎn),利用兩點(diǎn)之間線段最短可得出此時(shí)取得最小值,由點(diǎn)的坐標(biāo)可求出點(diǎn)的坐標(biāo),再利用勾股定理即可求出的最小值;(3)設(shè)點(diǎn)的坐標(biāo)為,由線段的長(zhǎng)及點(diǎn)的縱坐標(biāo)可得出只能為邊,分點(diǎn)在點(diǎn)的上方及點(diǎn)在點(diǎn)的下方兩種情況考慮:①當(dāng)點(diǎn)在點(diǎn)的上方時(shí),由可求出的值,進(jìn)而可得出點(diǎn),的坐標(biāo),結(jié)合可得出點(diǎn),的坐標(biāo);②當(dāng)點(diǎn)在點(diǎn)的下方時(shí),由可求出的值,進(jìn)而可得出點(diǎn),的坐標(biāo),結(jié)合可得出點(diǎn),的坐標(biāo).綜上,此題可得解.(1)解:∵四邊形是矩形,,,∴點(diǎn)的坐標(biāo)為,,∵點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,∴,∴反比例函數(shù)的解析式為,設(shè)點(diǎn)的縱坐標(biāo)為,∵,∴,∴,當(dāng)時(shí),,解得:,∴當(dāng)點(diǎn)在這個(gè)反比例函數(shù)的圖像上,點(diǎn)的坐標(biāo)為;(2)如圖1,由(1)可知,點(diǎn)在直線上,作點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn),連接'交直線于點(diǎn),∵點(diǎn)和點(diǎn)關(guān)于直線的對(duì)稱(chēng),∴直線垂直平分,∴,∴,即此時(shí)取得最小值,最小值為的長(zhǎng),∵點(diǎn)的坐標(biāo)為,∴點(diǎn)的坐標(biāo)為,∵點(diǎn)的坐標(biāo)為,,∴.∴的最小值為.(3)∵軸,,點(diǎn)的縱坐標(biāo)為,∴不能為對(duì)角線,只能為邊,設(shè)點(diǎn)的坐標(biāo)為,分兩種情況考慮,如圖2所示:①當(dāng)點(diǎn)在點(diǎn)的上方時(shí),由,∴,解得:,,∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,又∵,且軸,∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;②當(dāng)點(diǎn)在點(diǎn)的下方時(shí),由,∴,解得:,,∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,又∵,且軸,∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.綜上所述:當(dāng)以、、、為頂點(diǎn)的四邊形是菱形時(shí),點(diǎn)的坐標(biāo)為,,或.【點(diǎn)睛】本題考查反比例函數(shù)綜合題、矩形的性質(zhì)、菱形的判定和性質(zhì)、三角形的面積、軸對(duì)稱(chēng)最短問(wèn)題,勾股定理等知識(shí).解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用軸對(duì)稱(chēng)解決最短問(wèn)題,學(xué)會(huì)用分類(lèi)討論的方法思考問(wèn)題.6.(2022·全國(guó)·九年級(jí)單元測(cè)試)如圖,四邊形OABC是矩形,點(diǎn)A的坐標(biāo)為(0,6)點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B出發(fā),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.(1)當(dāng)t=1時(shí),請(qǐng)直接寫(xiě)出△BPQ的面積為;(2)當(dāng)△BPQ與△COQ相似時(shí),求t的值;(3)當(dāng)反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)P、Q兩點(diǎn)時(shí).①求k的值;②點(diǎn)M在x軸上,點(diǎn)N在反比例函數(shù)y=的圖象上,若以點(diǎn)M、N、P、Q為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出所有滿足條件的M的坐標(biāo).【答案】(1)3(2)當(dāng)△BPQ與△COQ相似時(shí),t的值為或(3)①;②當(dāng)以點(diǎn)M、N、P、Q為頂點(diǎn)的四邊形是平行四邊形,點(diǎn)M的坐標(biāo)為(,0)【分析】(1)由點(diǎn),的運(yùn)動(dòng)速度,可找出當(dāng)時(shí)點(diǎn),的坐標(biāo),進(jìn)而可得出,的長(zhǎng),再利用三角形的面積公式可求出此時(shí)的面積;(2)由可知分兩種情況考慮,①當(dāng)時(shí),利用相似三角形的性質(zhì)可得出關(guān)于的分式方程,解之經(jīng)檢驗(yàn)后即可得出值;②當(dāng)時(shí),利用相似三角形的性質(zhì)可得出關(guān)于的分式方程,解之經(jīng)檢驗(yàn)后即可得出值.綜上,此問(wèn)得解;(3)①由題意可得出點(diǎn),的坐標(biāo),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于,的方程,解之即可得出結(jié)論;②由①可得出點(diǎn),的坐標(biāo),分為邊及為對(duì)角線兩種情況考慮:當(dāng)為邊時(shí),利用平行四邊形的性質(zhì)可求出值,進(jìn)而可得出點(diǎn)的坐標(biāo),由點(diǎn),重合可得出此種情況不存在;當(dāng)為對(duì)角線時(shí),利用對(duì)角線互相平分可求出的值,進(jìn)而可得出點(diǎn),的坐標(biāo).綜上,此問(wèn)得解.(1)當(dāng)時(shí),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,,,.故答案為:3;(2)當(dāng)運(yùn)動(dòng)時(shí)間為秒時(shí),,,.與相似,,分兩種情況考慮:①當(dāng)時(shí),,即,解得:,,經(jīng)檢驗(yàn),,是原分式方程的解,符合題意,;②當(dāng)時(shí),,即,解得:,,經(jīng)檢驗(yàn),是原分式方程的解,且符合題意,;綜上所述:當(dāng)與相似時(shí),的值為或.(3)①依題意,得:點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)、兩點(diǎn),,,.②由①可知:點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,.分兩種情況考慮:當(dāng)為邊時(shí),,,點(diǎn)的坐標(biāo)為,此時(shí)點(diǎn),重合,不符合題意,此種情況不存在;當(dāng)為對(duì)角線時(shí),,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,.綜上所述:當(dāng)以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,點(diǎn)的坐標(biāo)為,.【點(diǎn)睛】本題考查了三角形的面積、相似三角形的性質(zhì)、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及平行四邊形的性質(zhì),解題的關(guān)鍵是:(1)找出當(dāng)時(shí)點(diǎn),的坐標(biāo);(2)利用相似三角形的性質(zhì),找出關(guān)于的方程;(3)①利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出關(guān)于,的方程組;②分為邊及為對(duì)角線兩種情況,利用相似三角形的性質(zhì)求出點(diǎn),的坐標(biāo).考點(diǎn)四反比例函數(shù)與菱形的綜合應(yīng)用例題:(2022·四川遂寧·八年級(jí)期末)如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)的圖像上,點(diǎn)D的坐標(biāo)為(4,3),設(shè)AB所在直線解析式為.(1)求反比例和一次函數(shù)解析式.(2)若將菱形ABCD沿x軸正方向平移m個(gè)單位,在平移中若反比例函數(shù)圖像與菱形的邊AD始終有交點(diǎn),求m的取值范圍.(3)在直線AB上是否存在M、N兩點(diǎn),使以MNOD四點(diǎn)的四邊形構(gòu)成矩形?若不存在,請(qǐng)說(shuō)明理由,若存在直接求出M、N(點(diǎn)M在點(diǎn)N的上方)兩點(diǎn)的坐標(biāo).【答案】(1),(2)0≤m≤(3)點(diǎn)N坐標(biāo)為(,);點(diǎn)M的坐標(biāo)為(,)【分析】(1)延長(zhǎng)AD交x軸于F,根據(jù)菱形的性質(zhì)和勾股定理得到A、B的坐標(biāo),利用待定系數(shù)法求解函數(shù)解析式即可;(2)根據(jù)平移性質(zhì),只需求得點(diǎn)D平移后落在反比例函數(shù)圖像上時(shí)的坐標(biāo)即可求解;(3)延長(zhǎng)AD交x軸于F,過(guò)點(diǎn)N作NH⊥y軸于H,證明△ONB≌△OFD(AAS)得到S△ONB=S△OFD,求出NH即可求得點(diǎn)N坐標(biāo),設(shè)M(x,),利用中點(diǎn)坐標(biāo)公式即可求出點(diǎn)M坐標(biāo).(1)解:延長(zhǎng)AD交x軸于F,∵四邊形ABCD是菱形,∴OB=OD=AD,AD∥OB,則AF⊥x軸,∵點(diǎn)D坐標(biāo)為(4,3),∴OF=4,DF=3,∴OD=5,即OB=AD=5,∴A(4,8),B(0,5),∴k=4×8=32,∴反比例函數(shù)的解析式為;將A、B坐標(biāo)代入中,得,解得:,∴一次函數(shù)的解析式為;(2)解:由題意知,將菱形ABCD沿x軸正方向平移m個(gè)單位,使得點(diǎn)D落在反比例函數(shù)的圖像D′處,∵點(diǎn)D平移后的坐標(biāo)為D′(4+m,3),∴,∴m=,∴滿足條件的m的取值范圍為0≤m≤.(3)解:存在,理由為:如圖,延長(zhǎng)AD交x軸于F,過(guò)點(diǎn)N作NH⊥y軸于H,則∠NHO=∠OFD=90°,由題意,∠ONB=∠NOD=∠HOF=90°,則∠NOB=∠FOD,又∠ONB=∠OFD=90°,OB=OD,∴△ONB≌△OFD(AAS),∴S△ONB=S△OFD,則,∴NH=,∵點(diǎn)N在直線AB上,∴當(dāng)x=時(shí),,∴點(diǎn)N坐標(biāo)為(,);設(shè)M(x,),則x+0=+4,解得:x=,,∴點(diǎn)M的坐標(biāo)為(,).【點(diǎn)睛】本題是反比例函數(shù)與幾何圖形的綜合題,涉及菱形的性質(zhì)、矩形的性質(zhì)、待定系數(shù)法求函數(shù)解析式、全等三角形的判定與性質(zhì)、坐標(biāo)與圖形、平移性質(zhì)等知識(shí),熟練掌握相關(guān)知識(shí)的聯(lián)系與運(yùn)用,添加輔助線,利用數(shù)形結(jié)合思想求解是解答的關(guān)鍵.【變式訓(xùn)練】1.(2022·江蘇·蘇州市胥江實(shí)驗(yàn)中學(xué)校八年級(jí)期中)圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為4的菱形頂點(diǎn)與原點(diǎn)重合,點(diǎn)在軸的正半軸上,點(diǎn)在函數(shù)的圖象上,________.【答案】【分析】延長(zhǎng)AD交x軸于F,求出DF和OF,即可求出A點(diǎn)的坐標(biāo),再代入函數(shù)解析式求出k即可【詳解】解:延長(zhǎng)AD交x軸于F,∵四邊形ABOD是菱形,∴AD=OD=4,∵∴∴,∴,又,AD∥OB,∴A點(diǎn)的坐標(biāo)是(,6),代入y=得:k=6×=,故答案為:【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo),用待定系數(shù)法求反比例函數(shù)的解析式和菱形的性質(zhì)等知識(shí)點(diǎn),能求出反比例函數(shù)的解析式是解此題的關(guān)鍵.2.(2022·江蘇南京·二模)如圖,菱形ABCD的邊BC在x軸上,頂點(diǎn)A,D分別在函數(shù),的圖像上.若,則A的坐標(biāo)為_(kāi)_____.【答案】【分析】過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,設(shè)DE=n,則,,即可得出,然后根據(jù)菱形的性質(zhì)及含30°直角三角形的性質(zhì)可求出n的值,進(jìn)而問(wèn)題可求解.【詳解】解:過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,如圖所示:設(shè)DE=n,由四邊形ABCD是菱形可知:,∴點(diǎn)A、D的縱坐標(biāo)為n,∵頂點(diǎn)A,D分別在函數(shù),的圖像上,∴,,∴,∵,∴,∴,即,解得:,∴點(diǎn);故答案為.【點(diǎn)睛】本題主要考查反比例函數(shù)與幾何的綜合、含30度直角三角形的性質(zhì)及菱形的性質(zhì),熟練掌握反比例函數(shù)與幾何的綜合、含30度直角三角形的性質(zhì)及菱形的性質(zhì)是解題的關(guān)鍵.3.(2022·貴州安順·中考真題)如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)在軸上,,兩點(diǎn)的坐標(biāo)分別為,,直線:與反比例函數(shù)的圖象交于,兩點(diǎn).(1)求該反比例函數(shù)的解析式及的值;(2)判斷點(diǎn)是否在該反比例函數(shù)的圖象上,并說(shuō)明理由.【答案】(1),(2)點(diǎn)在該反比例函數(shù)的圖象上,理由見(jiàn)解答【分析】(1)因?yàn)辄c(diǎn)在雙曲線上,所以代入點(diǎn)坐標(biāo)即可求出雙曲線的函數(shù)關(guān)系式,又因?yàn)辄c(diǎn)在雙曲線上,代入即可求出的值;(2)先求出點(diǎn)的坐標(biāo),判斷即可得出結(jié)論.(1)解:將點(diǎn)代入中,得,反比例函數(shù)的解析式為,將點(diǎn)代入中,得;(2)解:因?yàn)樗倪呅问橇庑?,,,,,,由?)知雙曲線的解析式為;,點(diǎn)在雙曲線上.【點(diǎn)睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,菱形的性質(zhì),解題的關(guān)鍵是用表示出點(diǎn)的坐標(biāo).4.(2022·江蘇·蘇州市胥江實(shí)驗(yàn)中學(xué)校八年級(jí)期中)如圖1,菱形頂點(diǎn)在軸上,頂點(diǎn)在反比例函數(shù)上,邊交軸于點(diǎn),軸,,.(1)求.(2)如圖2,延長(zhǎng)交軸于點(diǎn),問(wèn)是否在該反比例函數(shù)上存在的點(diǎn),坐標(biāo)軸上的點(diǎn),使得以、、、為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出所有滿足條件的點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.【答案】(1)k=;(2)Q點(diǎn)坐標(biāo)為(?3,0),(7,0),(0,4)或(0,).【分析】(1)設(shè)EC=x,則AE=2EC=2x,根據(jù)菱形的性質(zhì),得AB=5,BE=5?x,在Rt△ABE中用勾股定理求出EC=2,AE=4,表示出點(diǎn)C、D的坐標(biāo),列方程?=4即可求出k;(2)先求出直線AB的解析式,得F點(diǎn)坐標(biāo),設(shè)P點(diǎn)坐標(biāo)(m,),分情況討論:①Q(mào)在x軸上,設(shè)為(n,0),②Q在y軸上,設(shè)為(0,n),根據(jù)平行四邊形對(duì)角線互相平分列式求出n,即可得到點(diǎn)Q坐標(biāo).(1)解:設(shè)EC=x,則AE=2EC=2x,在菱形ABCD中,AD∥BC,AB=BC=AD=5,則BE=5?x,∵AD∥x軸,∴BC∥x軸,∴AE⊥BC,在Rt△ABE中,根據(jù)勾股定理,得,解得:x=2或x=0(舍去),∴EC=2,AE=4,∴C(2,),D(5,),∴?=4,解得:k=;(2)∵k=,∴C(2,?),D(5,?),∴A(0,?),B(?3,?),設(shè)直線AB的解析式:y=kx+b,代入A,B點(diǎn)坐標(biāo),得,解得:,∴直線AB的解析式:.當(dāng)時(shí),x=2,∴F(2,0),設(shè)P(m,),存在以A、F、P、Q為頂點(diǎn)的四邊形是平行四邊形,∵Q在坐標(biāo)軸上,①Q(mào)在x軸上,設(shè)Q(n,0),當(dāng)AF,PQ為對(duì)角線時(shí),2=m+n,?=,解得:,∴Q(?3,0),當(dāng)AP,F(xiàn)Q為對(duì)角線時(shí),得m=n+2,?=0,解得:(舍),當(dāng)AQ,F(xiàn)P為對(duì)角線,得n=m+2,?=,解得:,∴Q(7,0);②當(dāng)Q在y軸上,設(shè)Q(0,n),當(dāng)AF,PQ為對(duì)角線時(shí),m=2,?=n,解得:,∴Q(0,4),當(dāng)AP,F(xiàn)Q為對(duì)角線時(shí),得m=2,?=n,解得:,∴Q(0,),當(dāng)AQ,F(xiàn)P為對(duì)角線,得m+2=0,=n?,解得:(舍),綜上,Q點(diǎn)坐標(biāo)為(?3,0),(7,0),(0,4)或(0,).【點(diǎn)睛】本題考查了反比例函數(shù)與平行四邊形的綜合,熟練掌握待定系數(shù)法求解析式、平行四邊形的性質(zhì)以及解一元二次方程的方法是解決本題的關(guān)鍵.5.(2022·浙江寧波·八年級(jí)期末)如圖,菱形ABCD的頂點(diǎn)A、B分別在y軸與x軸正半軸上,C、D在第一象限,軸,反比例函數(shù)的圖象經(jīng)過(guò)頂點(diǎn)D.(1)若,①求反比例函數(shù)的解析式;②證明:點(diǎn)C落在反比例函數(shù)的圖象上;(2)若,,求菱形ABCD的邊長(zhǎng).【答案】(1)①;②見(jiàn)解析(2)【分析】(1)①過(guò)點(diǎn)D做y軸垂線交于點(diǎn)F,由為菱形得,,進(jìn)而求得,從而求得即可求出反比例函數(shù)的解析式;②過(guò)點(diǎn)C做x軸垂線交于點(diǎn)G,先求得,即可判斷C落在反比例函數(shù)的圖象上;(2)設(shè),則,,從而求得BD=2BE=2,得進(jìn)而有,解得,即可求解.(1)①解:過(guò)點(diǎn)D做y軸垂線交于點(diǎn)F,∵為菱形,∴,,易證四邊形AOBE、AEDF為矩形∴,∴,∴②證明:過(guò)點(diǎn)C做x軸垂線交于點(diǎn)G,易證四邊形AEBO、ACGO為矩形∴,∴,∴C落在反比例函數(shù)的圖象上;(2)解:∵,,DB=2BE,AC=2AE,∴設(shè),則,,∴BD=2BE=2,∴∵D在反比例函數(shù)上,∴,∴,∴,∴菱形ABCD的邊長(zhǎng)為6.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),坐標(biāo)與圖形,求反比例函數(shù)的解析式以及反比例函數(shù)的性質(zhì),熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.6.(2022·全國(guó)·九年級(jí)單元測(cè)試)如圖,菱形OABC的點(diǎn)B在y軸上,點(diǎn)C坐標(biāo)為(12,5),雙曲線的圖象經(jīng)過(guò)點(diǎn)A.(1)菱形OABC的邊長(zhǎng)為_(kāi)___;(2)求雙曲線的函數(shù)關(guān)系式;(3)①點(diǎn)B關(guān)于點(diǎn)O的對(duì)稱(chēng)點(diǎn)為D點(diǎn),過(guò)D作直線l垂直于y軸,點(diǎn)P是直線l上一個(gè)動(dòng)點(diǎn),點(diǎn)E在雙曲線上,當(dāng)P、E、A、B四點(diǎn)構(gòu)成平行四邊形時(shí),求點(diǎn)E的坐標(biāo);②將點(diǎn)P繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得點(diǎn)Q,當(dāng)點(diǎn)Q落在雙曲線上時(shí),求點(diǎn)Q的坐標(biāo).【答案】(1)13(2)反比例函數(shù)解析式為(3)①點(diǎn)E的坐標(biāo)為(12,-5);(4,-15);(-,25);②點(diǎn)Q的坐標(biāo)為(3,-20)【分析】(1)如圖所示,連接AC交y軸于J,根據(jù)菱形的性質(zhì)可得AC⊥OB,AJ=JC,OJ=BJ,由點(diǎn)C的坐標(biāo)為(12,5),得到AJ=JC=12,OJ=BJ=5,則;(2)先求出A點(diǎn)坐標(biāo),然后用待定系數(shù)法求出反比例函數(shù)解析式即可;(3)①分AB為以P、E、A、B四點(diǎn)構(gòu)成平行四邊形的邊和對(duì)角線兩種情況討論求解即可;②過(guò)點(diǎn)A作AT⊥PD于T,過(guò)點(diǎn)Q作QR⊥AT于R,先求出AT=9,然后證明△APT≌△QRA得到AT=RQ=15,則Q點(diǎn)的橫坐標(biāo)為3,由此求解即可.(1)解:如圖所示,連接AC交y軸于J,∵四邊形OABC是菱形,∴AC⊥OB,AJ=JC,OJ=BJ,∵點(diǎn)C的坐標(biāo)為(12,5),∴AJ=JC=12,OJ=BJ=5,∴,故答案為:5;(2)解:∵AJ=JC=12,OJ=BJ=5,∴點(diǎn)A的坐標(biāo)為(-12,5),∵反比例函數(shù)經(jīng)過(guò)點(diǎn)A(-12,5),∴,∴,∴反比例函數(shù)解析式為;(3)解:①設(shè)E點(diǎn)坐標(biāo)為(m,),∵OJ=BJ=5,∴OB=10,∴B點(diǎn)坐標(biāo)為(0,10),∵點(diǎn)B關(guān)于點(diǎn)O的對(duì)稱(chēng)點(diǎn)為D點(diǎn),∴D點(diǎn)坐標(biāo)為(0,-10),∴直線l為,設(shè)P點(diǎn)坐標(biāo)為(a,-10)當(dāng)AB是以P、E、A、B四點(diǎn)構(gòu)成平行四邊形的對(duì)角線時(shí),∵線段AB與線段PE的中點(diǎn)坐標(biāo)相同,∴,∴,∴點(diǎn)E的坐標(biāo)為(,25);如圖所示,當(dāng)AB為平行四邊形的邊時(shí),即以P、E、A、B四點(diǎn)構(gòu)成平行四邊形為時(shí),∵與的中點(diǎn)坐標(biāo)相同,∴,∴,∴的坐標(biāo)為(12,-5);同理可以求出當(dāng)AB為平行四邊形的邊時(shí),即以P、E、A、B四點(diǎn)構(gòu)成平行四邊形為時(shí),點(diǎn)的坐標(biāo)為(,-15);綜上所述,當(dāng)E點(diǎn)坐標(biāo)為(,-5)或(4,-15)或(,25)時(shí),以P、E、A、B四點(diǎn)構(gòu)成的四邊形是平行四邊形;②如圖所示,過(guò)點(diǎn)A作AT⊥PD于T,過(guò)點(diǎn)Q作QR⊥AT于R,∵點(diǎn)A的坐標(biāo)為(-12,5),直線l為,∴AT=15,∵∠ATP=∠QRA=∠PAQ=90°,∴∠PAT+∠APT=90°,∠PAT+∠QAR=90°,∴∠APT=∠QAR,又∵AP=QA,∴△APT≌△QRA(AAS),∴AT=RQ=15,∴Q點(diǎn)的橫坐標(biāo)為3,∵Q在反比例函數(shù)上,∴,∴點(diǎn)Q的坐標(biāo)為(3,).【點(diǎn)睛】本題主要考查了反比例函數(shù)與幾何綜合,菱形的性質(zhì),勾股定理,全等三角形的性質(zhì)與判定,平行四邊形的性質(zhì),坐標(biāo)與圖形,熟知相關(guān)知識(shí)是解題的關(guān)鍵.考點(diǎn)五反比例函數(shù)與正方形的綜合應(yīng)用例題:(2022·江蘇淮安·八年級(jí)期末)如圖,A、B分別是軸正半軸上和軸正半軸上的點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.(1)若點(diǎn)C坐標(biāo)為(2,3),則的值為_(kāi)_____;(2)若A、B兩點(diǎn)坐標(biāo)分別A(2,0),B(0,2);①則的值為_(kāi)_____;②此時(shí)點(diǎn)D______(填“在”、“不在”或者“不一定在”)該反比例函數(shù)的圖象上;(3)若C、D兩點(diǎn)都在函數(shù)的圖象上,直接寫(xiě)出點(diǎn)C的坐標(biāo)為_(kāi)_____.【答案】(1)6(2)①8,②在;(3)(1,2)【分析】(1)運(yùn)用待定系數(shù)法求反比例函數(shù)解析式中的的值即可;(2)①求出C點(diǎn)坐標(biāo),運(yùn)用待定系數(shù)法即可;②由題意可得D點(diǎn)坐標(biāo),代入反比例函數(shù)解析式,即可得出結(jié)論;(3)根據(jù)全等三角形的性質(zhì)和判定可得C、D點(diǎn)的坐標(biāo)特點(diǎn),即可得到點(diǎn)C的坐標(biāo)(1)∵點(diǎn)C坐標(biāo)為(2,3),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C,∴;(2)①連接AC,過(guò)點(diǎn)C作CE⊥y軸,過(guò)點(diǎn)D作CF⊥x軸,如圖所示,∵A、B兩點(diǎn)坐標(biāo)分別A(2,0),B(0,2)∴OA=OB=2∵∴,在正方形ABCD中,AC為對(duì)角線∴,,∴C點(diǎn)的橫坐標(biāo)為2∴∴∵反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C∴②由上小問(wèn)可知,反比例函數(shù)的解析式為,∵,∴∵CF⊥x軸∴∴∵正方形ABCD,∴∴∴∴將代入反比例函數(shù)的解析式得,,∴點(diǎn)D在該反比例函數(shù)的圖象上(3)過(guò)點(diǎn)C作CE⊥y軸,過(guò)點(diǎn)D作CF⊥x軸,∵CE⊥y軸,CF⊥x軸,∴,∵正方形ABCD,∴∴,∴在和中,,∴≌(AAS)∴,同理可得出:≌∴,設(shè),∴,∵C、D兩點(diǎn)都在函數(shù)的圖象上∴∴∴,∴解得:或(不合題意,舍去)∴點(diǎn)C的坐標(biāo):【點(diǎn)睛】此題主要考查了反比例函數(shù)綜合以及全等三角形的判定和性質(zhì),以及待定系數(shù)法求反比例函數(shù)解析式,得出C、D點(diǎn)的坐標(biāo)特點(diǎn)是本題的特點(diǎn).【變式訓(xùn)練】1.(2022·江蘇·星海實(shí)驗(yàn)中學(xué)八年級(jí)期末)如圖,是射線上一點(diǎn),過(guò)作軸于點(diǎn),以為邊在其右側(cè)作正方形,過(guò)的雙曲線交邊于點(diǎn),則的值為(
)A. B. C. D.【答案】A【分析】設(shè)點(diǎn)B的坐標(biāo)為(m,0),則點(diǎn)A的坐標(biāo)為(m,),把點(diǎn)A的坐標(biāo)代入反比例函數(shù),得到反比例函數(shù)的解析式為y=,結(jié)合正方形的性質(zhì),得到點(diǎn)C,點(diǎn)D和點(diǎn)E的橫坐標(biāo),把點(diǎn)E的橫坐標(biāo)代入反比例函數(shù)的解析式,得到點(diǎn)E的縱坐標(biāo),求出線段DE和線段EC的長(zhǎng)度,即可得到答案.【詳解】解:設(shè)點(diǎn)B的坐標(biāo)為(m,0),則點(diǎn)A的坐標(biāo)為(m,),∴線段AB的長(zhǎng)度為,點(diǎn)D的縱坐標(biāo)為,∵點(diǎn)A在反比例函數(shù)上,∴k=,即反比例函數(shù)的解析式為:y=,∵四邊形ABCD為正方形,∴正方形ABCD的邊長(zhǎng)為,點(diǎn)C,點(diǎn)D和點(diǎn)E的橫坐標(biāo)為m+,把x=代入y=得:y=,即點(diǎn)E的縱坐標(biāo)為,∴EC=,DE=,∴,故選:A.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征和正方形的性質(zhì),正確掌握待定系數(shù)法和正方形的性質(zhì)是解題的關(guān)鍵.2.(2022·黑龍江牡丹江·九年級(jí)期末)如圖,正方形ABCD的邊長(zhǎng)為3,AD邊在x軸負(fù)半軸上,反比例函數(shù)y=(x<0)的圖像經(jīng)過(guò)點(diǎn)B和CD邊中點(diǎn)E,則k的值為_(kāi)_____.【答案】-9【分析】設(shè)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高中政治第二單元生產(chǎn)勞動(dòng)與經(jīng)營(yíng)第五課企業(yè)與勞動(dòng)者課時(shí)2新時(shí)代的勞動(dòng)者課時(shí)精練含解析新人教版必修1
- 2024-2025學(xué)年高中歷史第六單元世界資本主義經(jīng)濟(jì)政策的調(diào)整第19課戰(zhàn)后資本主義的新變化練習(xí)新人教版必修2
- 2024-2025學(xué)年高中數(shù)學(xué)第一章統(tǒng)計(jì)案例1.2獨(dú)立性檢驗(yàn)的基本思想及其初步應(yīng)用練習(xí)含解析新人教A版選修1-2
- 2024-2025學(xué)年新教材高中物理第2章第2節(jié)勻變速直線運(yùn)動(dòng)的速度與時(shí)間的關(guān)系練習(xí)含解析新人教版必修第一冊(cè)
- 2024-2025學(xué)年高中生物第5章第3節(jié)人類(lèi)遺傳病習(xí)題含解析新人教版必修2
- 2025年中國(guó)微型轎車(chē)行業(yè)市場(chǎng)運(yùn)營(yíng)現(xiàn)狀及行業(yè)發(fā)展趨勢(shì)報(bào)告
- 2025年中國(guó)角度編碼器行業(yè)市場(chǎng)深度分析及投資潛力預(yù)測(cè)報(bào)告
- 智能回單管理系統(tǒng)行業(yè)深度研究報(bào)告
- 切換電容接觸器行業(yè)市場(chǎng)發(fā)展及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 三層地坑式車(chē)庫(kù)行業(yè)市場(chǎng)發(fā)展及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 23G409先張法預(yù)應(yīng)力混凝土管樁
- 三年級(jí)下冊(cè)口算天天100題(A4打印版)
- 短視頻抖音運(yùn)營(yíng)培訓(xùn)課程
- 醫(yī)生個(gè)人學(xué)習(xí)心得五篇
- 合規(guī)理論知識(shí)考核試題題庫(kù)及答案
- 新版人教版七年級(jí)下冊(cè)語(yǔ)文全冊(cè)課件(2020最新版)
- MSDS物質(zhì)安全技術(shù)資料-洗面水
- 河南省地圖含市縣地圖矢量分層地圖行政區(qū)劃市縣概況ppt模板
- 績(jī)效管理全套ppt課件(完整版)
- 推進(jìn)優(yōu)質(zhì)護(hù)理-改善護(hù)理服務(wù)-PPT課件
- T∕CNFAGS 3-2021 三聚氰胺單位產(chǎn)品消耗限額
評(píng)論
0/150
提交評(píng)論