版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省執(zhí)信中學、廣州二中、廣州六中、廣雅中學四校高二上數(shù)學期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.2.計算復數(shù):()A. B.C. D.3.已知數(shù)列滿足:,,則()A. B.C. D.4.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.15.直線且的傾斜角為()A. B.C. D.6.已知正方形的四個頂點都在橢圓上,若的焦點F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.7.焦點坐標為,(0,4),且長半軸的橢圓方程為()A. B.C. D.8.圓關(guān)于直線l:對稱的圓的方程為()A. B.C. D.9.若動圓的圓心在拋物線上,且恒過定點,則此動圓與直線()A.相交 B.相切C.相離 D.不確定10.如圖,已知,分別是橢圓的左、右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為()A. B.C. D.11.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.相離12.下列拋物線中,以點為焦點的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中項的系數(shù)是,則正整數(shù)______________.14.已知數(shù)列中,,且數(shù)列為等差數(shù)列,則_____________.15.已知拋物線:,若直線與拋物線C相交于M,N兩點,則_______________.16.若不同的平面的一個法向量分別為,,則與的位置關(guān)系為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,且,求實數(shù)的取值范圍.18.(12分)在平面直角坐標系中,已知點.點M滿足.記M的軌跡為C.(1)求C的方程;(2)直線l經(jīng)過點,與軌跡C分別交于點M、N,與直線交于點Q,求證:.19.(12分)已知圓心為的圓經(jīng)過,兩點,且圓心在直線上,求此圓的標準方程.20.(12分)已知直線l的斜率為-2,且與兩坐標軸的正半軸圍成三角形的面積等于1.圓C的圓心在第四象限,直線l經(jīng)過圓心,圓C被x軸截得的弦長為4.若直線x-2y-1=0與圓C相切,求圓C的方程21.(12分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.22.(10分)已知直線:,直線:(1)若,之間的距離為3,求c的值:(2)求直線截圓C:所得弦長
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F(xiàn)三點共線時,最小,再結(jié)合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A2、D【解析】直接利用復數(shù)代數(shù)形式的乘除運算化簡可得結(jié)論.【詳解】故選:D.3、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項,推導出數(shù)列{an}從第6項起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A4、C【解析】作出可行域,把變形為,平移直線過點時,最大.【詳解】作出可行域如圖:由得:,作出直線,平移直線過點時,.故選C.【點睛】本題主要考查了簡單線性規(guī)劃問題,屬于中檔題.5、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.6、C【解析】如圖由題可得,進而可得,即求.【詳解】如圖根據(jù)對稱性,點D在直線y=x上,可設(shè),則,∴,可得,,即,又解得.故選:C.7、B【解析】根據(jù)題意可知,即可由求出,再根據(jù)焦點位置得出橢圓方程【詳解】因為,所以,而焦點在軸上,所以橢圓方程為故選:B8、A【解析】首先求出圓的圓心坐標與半徑,再設(shè)圓心關(guān)于直線對稱的點的坐標為,即可得到方程組,求出、,即可得到圓心坐標,從而求出對稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對稱的點的坐標為,則,解得,即圓關(guān)于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A9、B【解析】根據(jù)題意得定點為拋物線的焦點,為準線,進而根據(jù)拋物線的定義判斷即可.【詳解】解:由題知,定點為拋物線的焦點,為準線,因為動圓的圓心在拋物線上,且恒過定點,所以根據(jù)拋物線的定義得動圓的圓心到直線的距離等于圓心到定點,即圓心到直線的距離等于動圓的半徑,所以動圓與直線相切.故選:B10、A【解析】由切線的性質(zhì),可得,,再結(jié)合橢圓定義,即得解【詳解】因為過點的直線圓的切線,,,所以由橢圓定義可得,可得橢圓的離心率故選:A11、C【解析】寫出兩圓的圓心和半徑,求出圓心距,發(fā)現(xiàn)與兩圓的半徑和相等,所以判斷兩圓外切【詳解】圓的標準方程為:,所以圓心坐標為,半徑;圓的圓心為,半徑,圓心距,所以兩圓相外切故選:C12、A【解析】由題意設(shè)出拋物線的方程,再結(jié)合焦點坐標即可求出拋物線的方程.【詳解】∵拋物線為,∴可設(shè)拋物線方程為,∴即,∴拋物線方程為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】由已知二項式可得展開式通項為,根據(jù)已知條件有,即可求出值.詳解】由題設(shè),,∴,則且為正整數(shù),解得.故答案為:4.14、【解析】由題意得:考點:等差數(shù)列通項15、8【解析】直線方程代入拋物線方程,應(yīng)用韋達定理根據(jù)弦長公式求弦長【詳解】設(shè),由得,所以,,故答案為:816、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、.【解析】求得集合,根據(jù),分和,兩種情況討論,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】由題意,集合當時,即,解得,此時滿足,當時,要使得,則或,當時,可得,即,此時,滿足;當時,可得,即,此時,不滿足,綜上可知,實數(shù)的取值范圍為.18、(1)(2)證明見解析【解析】(1)根據(jù)已知得點M的軌跡C為橢圓,根據(jù)橢圓定義可得方程;(2)直線的方程設(shè)為,與橢圓方程聯(lián)立,利用韋達定理及線段長公式進行計算即可.【小問1詳解】由橢圓定義得,點M的軌跡C為以點為焦點,長軸長為4的橢圓,設(shè)此橢圓的標準方程為,則由題意得,所以C方程為;【小問2詳解】設(shè)點的坐標分別為,由題意知直線的斜率一定存在,設(shè)為,則直線的方程可設(shè)為,與橢圓方程聯(lián)立可得,由韋達定理知,所以,,又因為,所以又由題知,所以,所以,所以,得證.19、【解析】設(shè)圓心坐標為,根據(jù)兩點在圓上利用兩點的距離公式建立關(guān)于的方程,解出值.從而求出圓的圓心和半徑,可得圓的方程【詳解】解:∵圓心在直線,∴設(shè)圓心坐標為,根據(jù)點和在圓上,可得解之得.∴圓心坐標為,半徑.因此,此圓的標準方程是20、【解析】先根據(jù)題意設(shè)直線方程,由條件求出直線的方程,再根據(jù)條件列出等量關(guān)系,求出圓心和半徑,進而求得答案.【詳解】解:設(shè)直線l的方程為y=-2x+b(b>0),它與兩坐標軸的正半軸的交點依次為,,因為直線l與兩坐標軸的正半軸所圍成的三角形的面積等于1,所以,解得b=2,所以直線l的方程是,即由題意,可設(shè)圓C的圓心為,半徑為r,又因為圓C被x軸截得的弦長等于4,所以①,由于直線與圓相切,所以圓心C到直線的距離②,所以①②聯(lián)立得:,解得:或,又圓心在第四象限,所以,則圓心,,所以圓C方程是.21、(1)(2)【解析】(1)為真命題,則都為真命題,求出為真命題時的m的取值范圍,并求交集,即為結(jié)果;(2)若是假命題,是真命題,則一真一假,分兩種情況進行求解,最后求并集即為結(jié)果.【小問1詳解】由題意得:為真命題,則要滿足,解得:,對任意的恒成立,結(jié)合開口向上,所以要滿足:,解得:,要保證是真命題,則與取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南省鄭州市中原區(qū)2024-2025學年上學期高三年級一測模擬演練 英語試卷(含答案無聽力原文、答案及音頻)
- 2025年度勞動合同員工福利待遇與補貼合同3篇
- 2024版標準汽車租賃合同協(xié)議
- 2024路邊廣告位使用權(quán)及城市美化工程合作合同3篇
- 2024項目開發(fā)全過程委托協(xié)議版B版
- 健康監(jiān)護知識培訓課件
- 福建省南平市建陽水吉中學2020-2021學年高三物理期末試卷含解析
- 2024男方離婚條件下的贍養(yǎng)費支付與房產(chǎn)分割合同3篇
- 2025年度冷鏈倉儲行業(yè)員工勞動合同書3篇
- 2024版混凝土構(gòu)件加工承攬合同
- 企業(yè)各部門安全生產(chǎn)職責培訓PPT課件
- 運用QC方法提高雨、污水管道施工質(zhì)量
- 王力指紋鎖中文使用說明
- 物流運籌學附錄習題答案
- 市政府副市長年道路春運工作會議講話稿
- GB_T 37514-2019 動植物油脂 礦物油的檢測(高清版)
- 閘門水力計算說明
- 大型塔器“立裝成段整體就位”工法
- 車輛使用授權(quán)書
- 常用函數(shù)圖像(1)
- 說明書ZWY-150(120)-45L煤礦用挖掘式裝載機
評論
0/150
提交評論