版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第三 導(dǎo)數(shù)與微第01 函數(shù)在一點(diǎn)處的導(dǎo)數(shù)定3.1例1.如圖3-1,當(dāng)點(diǎn)B沿曲線y=f(x)趨向于點(diǎn)A是曲線y=f(x)是過A,B趨向于直線L,則稱L為曲線y=f(x)在點(diǎn)A就是切線L 講義編號(hào)NODE50473700030100000101:]例2.變速運(yùn)動(dòng)物體的瞬時(shí)速度.設(shè)運(yùn)動(dòng)物體走過的距離S與行走時(shí)間t之間的關(guān)系為S=S(t),t0時(shí)刻到t講義編號(hào)NODE50473700030100000102:3.1.11.定義3.1y=f(x)在x0第三 導(dǎo)數(shù)與微第01 函數(shù)在一點(diǎn)處的導(dǎo)數(shù)定3.1例1.如圖3-1,當(dāng)點(diǎn)B沿曲線y=f(x)趨向于點(diǎn)A是曲線y=f(x)是過A,B趨向于直線L,則稱L為曲線y=f(x)在點(diǎn)A就是切線L 講義編號(hào)NODE50473700030100000101:]例2.變速運(yùn)動(dòng)物體的瞬時(shí)速度.設(shè)運(yùn)動(dòng)物體走過的距離S與行走時(shí)間t之間的關(guān)系為S=S(t),t0時(shí)刻到t講義編號(hào)NODE50473700030100000102:3.1.11.定義3.1y=f(x)在x0及其附近有定義,如果極限v存在,則稱函數(shù)f(x)表示的是函數(shù)f(x)上自變量改變1位時(shí),函數(shù)值平均改變了幾個(gè)單位,所以其值稱為f(x)也就是導(dǎo)數(shù)值f’(x),稱為函數(shù)f(x)在x0處的瞬時(shí)變化率,|(3)講義編號(hào)NODE50473700030100000103:]解:設(shè)v所以函數(shù)f(x)=C在x處可導(dǎo),且講義編號(hào)NODE50473700030100000104:解:設(shè)x講義編號(hào)NODE50473700030100000105:例5.用定義求函數(shù)解:設(shè)x所以函數(shù)在x講義編號(hào)NODE50473700030100000106:(3)講義編號(hào)NODE50473700030100000103:]解:設(shè)v所以函數(shù)f(x)=C在x處可導(dǎo),且講義編號(hào)NODE50473700030100000104:解:設(shè)x講義編號(hào)NODE50473700030100000105:例5.用定義求函數(shù)解:設(shè)x所以函數(shù)在x講義編號(hào)NODE50473700030100000106:]所以函數(shù)f(x)=lnx在x(x>0)講義編號(hào)NODE50473700030100000107:]解:設(shè)x所以函數(shù)f(x)=sinx在x講義編號(hào)NODE50473700030100000108:針對(duì)本講義提問] 答案講義編號(hào)NODE50473700030100000109:第02 單側(cè)導(dǎo)數(shù)、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與連續(xù)的關(guān)2.所以函數(shù)f(x)=lnx在x(x>0)講義編號(hào)NODE50473700030100000107:]解:設(shè)x所以函數(shù)f(x)=sinx在x講義編號(hào)NODE50473700030100000108:針對(duì)本講義提問] 答案講義編號(hào)NODE50473700030100000109:第02 單側(cè)導(dǎo)數(shù)、導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)與連續(xù)的關(guān)2.處右可導(dǎo),極限的值稱為函數(shù)f(x)在x=x0存在,則稱函數(shù)f(x)在存在,則稱函數(shù)f(x)在定理3.1y=f(x)在x0及其附近有定義,則f(x)在x0說它在區(qū)間(a,b)稱為f(x)在區(qū)間(a,b)當(dāng)函數(shù)f(x)在區(qū)間(a,b)內(nèi)的每一點(diǎn)都可導(dǎo),且在x=a處右可導(dǎo),在x=b間[a,b]也稱為f(x)在區(qū)間[a,b]講義編號(hào)NODE50473700030200000101:例9.在x=1,故函數(shù)()在=1講義編號(hào)NODE50473700030200000102:針對(duì)本講義提問] 答案講義編號(hào)NODE50473700030200000103:3.說它在區(qū)間(a,b)稱為f(x)在區(qū)間(a,b)當(dāng)函數(shù)f(x)在區(qū)間(a,b)內(nèi)的每一點(diǎn)都可導(dǎo),且在x=a處右可導(dǎo),在x=b間[a,b]也稱為f(x)在區(qū)間[a,b]講義編號(hào)NODE50473700030200000101:例9.在x=1,故函數(shù)()在=1講義編號(hào)NODE50473700030200000102:針對(duì)本講義提問] 答案講義編號(hào)NODE50473700030200000103:3.過切點(diǎn)且與曲線在該點(diǎn)的切線垂直的直線稱為曲線在該點(diǎn)的法線,當(dāng)f’(x)≠0時(shí),曲線y=f(x) 講義編號(hào)NODE50473700030200000104:講義編號(hào)NODE50473700030200000105:]解:因?yàn)榍€y=f(x)與y=lnx在x=1所以講義編號(hào)NODE50473700030200000106:例13.此時(shí),曲線解得所以,切線方程是y=6+4(x-講義編號(hào)NODE50473700030200000107:4.所以f(x)=|x|在x=0講義編號(hào)NODE50473700030200000108:例14.,在x=0處連續(xù)但不可導(dǎo),則α的取值范圍是講義編號(hào)NODE50473700030200000105:]解:因?yàn)榍€y=f(x)與y=lnx在x=1所以講義編號(hào)NODE50473700030200000106:例13.此時(shí),曲線解得所以,切線方程是y=6+4(x-講義編號(hào)NODE50473700030200000107:4.所以f(x)=|x|在x=0講義編號(hào)NODE50473700030200000108:例14.,在x=0處連續(xù)但不可導(dǎo),則α的取值范圍是答案講義編號(hào)NODE50473700030200000109:例15.,在x=0處可導(dǎo),求a,b解:因?yàn)閒(x)在x=0處可導(dǎo),所以f(x)在x=0所以講義編號(hào)NODE50473700030200000110:第033.1.2如圖3-2,邊長為x講義編號(hào)NODE50473700030300000101:]則稱函數(shù)f(x)及其附近有定義,如果函數(shù)值f(x)與自變量改變量的高階無窮小量)稱為f(x) 講義編號(hào)NODE50473700030300000102:例16.設(shè)函數(shù)y=f(x)在 處可導(dǎo)dy是h△y-dy是hdy是比h△y-dy是比h則當(dāng)h→0時(shí),必有答案講義編號(hào)NODE50473700030300000103:2.定理3.3函數(shù)f(x)處可微的充要條件是函數(shù)f(x)所以講義編號(hào)NODE50473700030200000110:第033.1.2如圖3-2,邊長為x講義編號(hào)NODE50473700030300000101:]則稱函數(shù)f(x)及其附近有定義,如果函數(shù)值f(x)與自變量改變量的高階無窮小量)稱為f(x) 講義編號(hào)NODE50473700030300000102:例16.設(shè)函數(shù)y=f(x)在 處可導(dǎo)dy是h△y-dy是hdy是比h△y-dy是比h則當(dāng)h→0時(shí),必有答案講義編號(hào)NODE50473700030300000103:2.定理3.3函數(shù)f(x)處可微的充要條件是函數(shù)f(x)講義編號(hào)NODE50473700030300000104:]幾何意義:(如圖)是曲線的縱坐標(biāo)增量時(shí),dy很小時(shí),在點(diǎn)M的附近,切線段MP可近似代替曲線MN曲線y=f(x)即函數(shù)f(x)處的微分值是曲線y=f(x)講義編號(hào)NODE50473700030300000105:]1.求f(x)在點(diǎn)=0講義編號(hào)NODE50473700030300000106:例17.的近似值,就是在該點(diǎn)附近用切線近似表示曲線講義編號(hào)NODE50473700030300000107:講義編號(hào)NODE50473700030300000104:]幾何意義:(如圖)是曲線的縱坐標(biāo)增量時(shí),dy很小時(shí),在點(diǎn)M的附近,切線段MP可近似代替曲線MN曲線y=f(x)即函數(shù)f(x)處的微分值是曲線y=f(x)講義編號(hào)NODE50473700030300000105:]1.求f(x)在點(diǎn)=0講義編號(hào)NODE50473700030300000106:例17.的近似值,就是在該點(diǎn)附近用切線近似表示曲線講義編號(hào)NODE50473700030300000107:例18.講義編號(hào)NODE50473700030300000108:],求t=2解:v=S’=2t+4,t=2時(shí),v(2)=8,所以,此時(shí)的瞬時(shí)速度是講義編號(hào)NODE50473700030300000109:例20.設(shè)某產(chǎn)品生產(chǎn)x,求生產(chǎn)第100所以,總收入的變化率是講義編號(hào)NODE50473700030300000110:第04 導(dǎo)數(shù)的運(yùn)算(一3.2講義編號(hào)NODE50473700030400000101:3.2.1定理3.4若函數(shù)f(x),g(x)講義編號(hào)NODE50473700030400000102:例18.講義編號(hào)NODE50473700030300000108:],求t=2解:v=S’=2t+4,t=2時(shí),v(2)=8,所以,此時(shí)的瞬時(shí)速度是講義編號(hào)NODE50473700030300000109:例20.設(shè)某產(chǎn)品生產(chǎn)x,求生產(chǎn)第100所以,總收入的變化率是講義編號(hào)NODE50473700030300000110:第04 導(dǎo)數(shù)的運(yùn)算(一3.2講義編號(hào)NODE50473700030400000101:3.2.1定理3.4若函數(shù)f(x),g(x)講義編號(hào)NODE50473700030400000102:]例1講義編號(hào)NODE50473700030400000103:例2.講義編號(hào)NODE50473700030400000104:例3.講義編號(hào)NODE50473700030400000105:]講義編號(hào)NODE50473700030400000106:講義編號(hào)NODE50473700030400000103:例2.講義編號(hào)NODE50473700030400000104:例3.講義編號(hào)NODE50473700030400000105:]講義編號(hào)NODE50473700030400000106:例5.(1)講義編號(hào)NODE50473700030400000107:(2) 講義編號(hào)NODE50473700030400000108:3.2.21.定理3.5的復(fù)合,若g(x)處可導(dǎo),f(u)關(guān)于x講義編號(hào)NODE50473700030400000109:]講義編號(hào)NODE50473700030400000110:講義編號(hào)NODE50473700030400000111:例5.(1)講義編號(hào)NODE50473700030400000107:(2) 講義編號(hào)NODE50473700030400000108:3.2.21.定理3.5的復(fù)合,若g(x)處可導(dǎo),f(u)關(guān)于x講義編號(hào)NODE50473700030400000109:]講義編號(hào)NODE50473700030400000110:講義編號(hào)NODE50473700030400000111:講義編號(hào)NODE50473700030400000112:講義編號(hào)NODE50473700030400000113:(5)講義編號(hào)NODE50473700030400000114:例7.,其中f(x)所以選講義編號(hào)NODE50473700030400000115:例8.(A)﹣2 講義編號(hào)NODE50473700030400000112:講義編號(hào)NODE50473700030400000113:(5)講義編號(hào)NODE50473700030400000114:例7.,其中f(x)所以選講義編號(hào)NODE50473700030400000115:例8.(A)﹣2 ,選講義編號(hào)NODE50473700030400000116:第05 導(dǎo)數(shù)的運(yùn)算(二2.已知函數(shù)y=f(u),若函數(shù)u=g(x)f(g(x))有意義,則根據(jù)復(fù)合函數(shù)的鏈?zhǔn)角髮?dǎo)法則及微分計(jì)算公式,可知y=f(g(x))上面的討論說明,對(duì)于函數(shù)y=f(u),無論變量u講義編號(hào)NODE50473700030500000101:例9.講義編號(hào)NODE50473700030500000102:3.2.3定理3.6設(shè)函數(shù)f,g存在且不為零,則g(y)講義編號(hào)NODE50473700030500000103:]解:(1)講義編號(hào)NODE50473700030500000104:例11.,選講義編號(hào)NODE50473700030400000116:第05 導(dǎo)數(shù)的運(yùn)算(二2.已知函數(shù)y=f(u),若函數(shù)u=g(x)f(g(x))有意義,則根據(jù)復(fù)合函數(shù)的鏈?zhǔn)角髮?dǎo)法則及微分計(jì)算公式,可知y=f(g(x))上面的討論說明,對(duì)于函數(shù)y=f(u),無論變量u講義編號(hào)NODE50473700030500000101:例9.講義編號(hào)NODE50473700030500000102:3.2.3定理3.6設(shè)函數(shù)f,g存在且不為零,則g(y)講義編號(hào)NODE50473700030500000103:]解:(1)講義編號(hào)NODE50473700030500000104:例11.講義編號(hào)NODE50473700030500000105:3.2.42.講義編號(hào)NODE50473700030500000106:]4.5.講義編號(hào)NODE50473700030500000107:]講義編號(hào)NODE50473700030500000108:]講義編號(hào)NODE50473700030500000109:講義編號(hào)NODE50473700030500000105:3.2.42.講義編號(hào)NODE50473700030500000106:]4.5.講義編號(hào)NODE50473700030500000107:]講義編號(hào)NODE50473700030500000108:]講義編號(hào)NODE50473700030500000109:講義編號(hào)NODE50473700030500000110:講義編號(hào)NODE50473700030500000111:]講義編號(hào)NODE50473700030500000112:]講義編號(hào)NODE50473700030500000110:講義編號(hào)NODE50473700030500000111:]講義編號(hào)NODE50473700030500000112:]講義編號(hào)NODE50473700030500000113:第06 隱函數(shù)求導(dǎo)1.當(dāng)y解不出來的時(shí)候,我們可以把y講義編號(hào)NODE50473700030600000101:例1.已知函數(shù)y=y(x)兩端關(guān)于變量x求導(dǎo),y講義編號(hào)NODE50473700030600000102:例2.已知函數(shù)y=y(x)確定,求y=y(x)在x=0兩邊關(guān)于變量x求導(dǎo),將y將x=0將x=0,y(0)=1,得講義編號(hào)NODE50473700030600000103:例3.已知函數(shù)y=y(x)確定,求曲線y=y(x)在點(diǎn)(0,y(0))將x=0將x=0,y(0)=0兩端關(guān)于變量x求導(dǎo),將y,解得講義編號(hào)NODE50473700030500000113:第06 隱函數(shù)求導(dǎo)1.當(dāng)y解不出來的時(shí)候,我們可以把y講義編號(hào)NODE50473700030600000101:例1.已知函數(shù)y=y(x)兩端關(guān)于變量x求導(dǎo),y講義編號(hào)NODE50473700030600000102:例2.已知函數(shù)y=y(x)確定,求y=y(x)在x=0兩邊關(guān)于變量x求導(dǎo),將y將x=0將x=0,y(0)=1,得講義編號(hào)NODE50473700030600000103:例3.已知函數(shù)y=y(x)確定,求曲線y=y(x)在點(diǎn)(0,y(0))將x=0將x=0,y(0)=0兩端關(guān)于變量x求導(dǎo),將y,解得所以曲線y=y(x)在點(diǎn)(0,y(0))處的切線方程為y=﹣x,法線方程為講義編號(hào)NODE50473700030600000104:例4.求笛卡兒葉形線(如圖3-4所示在點(diǎn)(2,4)解:這個(gè)方程在點(diǎn)(2,4)附近確定了y是x兩端關(guān)于變量x求導(dǎo),將y將x=2,y=4代入上式,得于是笛卡兒葉形線在點(diǎn)(2,4)講義編號(hào)NODE50473700030600000105:第07 對(duì)數(shù)求導(dǎo)講義編號(hào)NODE50473700030700000101:例上式兩邊對(duì)x講義編號(hào)NODE50473700030700000102:例6.解:這個(gè)方程在點(diǎn)(2,4)附近確定了y是x兩端關(guān)于變量x求導(dǎo),將y將x=2,y=4代入上式,得于是笛卡兒葉形線在點(diǎn)(2,4)講義編號(hào)NODE50473700030600000105:第07 對(duì)數(shù)求導(dǎo)講義編號(hào)NODE50473700030700000101:例上式兩邊對(duì)x講義編號(hào)NODE50473700030700000102:例6.兩端關(guān)于變量x求導(dǎo),將y講義編號(hào)NODE50473700030700000103:例7.兩端關(guān)于變量x求導(dǎo),將y講義編號(hào)NODE50473700030700000104:例8.(1)兩端關(guān)于變量x求導(dǎo),將y(2)lny=ln(x-1)+2ln(x-2)+3ln(x-兩端關(guān)于變量x求導(dǎo),將y講義編號(hào)NODE50473700030700000105:第08 高階導(dǎo)3.3.21.我們知道,當(dāng)運(yùn)動(dòng)物體移動(dòng)的距離S與移動(dòng)時(shí)間t之間的關(guān)系式S=S(t)已知時(shí),導(dǎo)數(shù)S′(t)該物體在t時(shí)刻的瞬時(shí)速 ,.該物體在t中的每一點(diǎn)x兩端關(guān)于變量x求導(dǎo),將y講義編號(hào)NODE50473700030700000103:例7.兩端關(guān)于變量x求導(dǎo),將y講義編號(hào)NODE50473700030700000104:例8.(1)兩端關(guān)于變量x求導(dǎo),將y(2)lny=ln(x-1)+2ln(x-2)+3ln(x-兩端關(guān)于變量x求導(dǎo),將y講義編號(hào)NODE50473700030700000105:第08 高階導(dǎo)3.3.21.我們知道,當(dāng)運(yùn)動(dòng)物體移動(dòng)的距離S與移動(dòng)時(shí)間t之間的關(guān)系式S=S(t)已知時(shí),導(dǎo)數(shù)S′(t)該物體在t時(shí)刻的瞬時(shí)速 ,.該物體在t中的每一點(diǎn)x的n講義編號(hào)NODE50473700030800000101:]例9.講義編號(hào)NODE50473700030800000102:例10.講義編號(hào)NO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國MLCC行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 新形勢(shì)下川菜餐飲行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國月子中心行業(yè)全國市場(chǎng)開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國酒店管理服務(wù)行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國標(biāo)識(shí)設(shè)計(jì)制作行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 織物設(shè)計(jì)與思考
- 關(guān)于進(jìn)一步健全和完善城市社區(qū)治理體系建設(shè)的工作方案
- 2019-2025年中國養(yǎng)雞場(chǎng)行業(yè)市場(chǎng)深度分析及發(fā)展前景預(yù)測(cè)報(bào)告
- 湖北省襄陽市谷城縣石花三中2023-2024學(xué)年九年級(jí)上學(xué)期期末化學(xué)試卷
- 雪茄基礎(chǔ)知識(shí)培訓(xùn)課件
- 混凝土澆筑申請(qǐng)表
- 企業(yè)培訓(xùn)5W2H分析法(31P PPT)
- DB13T 2802-2018 水利工程鑄鐵閘門技術(shù)規(guī)范
- 必修二unit4History and Traditions重點(diǎn)短語梳理
- 食堂改造與裝修設(shè)計(jì)方案
- 德國Lurgi公司低壓回轉(zhuǎn)脈沖袋除塵器技術(shù)
- Q∕GDW 12147-2021 電網(wǎng)智能業(yè)務(wù)終端接入規(guī)范
- 塑料件缺陷匯總
- 跌落測(cè)試(中文版)-ISTA-2A-2006
- ppt魚骨圖模板圖
- 右心導(dǎo)管檢查及心血管造影ppt課件
評(píng)論
0/150
提交評(píng)論