版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題19立體幾何綜合小題必刷100題任務(wù)一:善良模式(基礎(chǔ))1-30題一、單選題1.已知正四棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)均為2,則該正四棱錐的體積為()A. B. C. D.2.已知,為兩條不同的直線,,為兩個(gè)不同的平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,則3.如圖,空間四邊形中,點(diǎn)在線段上,且,為的中點(diǎn),,則,,的值分別為()A.,, B.,, C.,, D.,,4.已知,,是三個(gè)不同的平面,,是兩條不同的直線,下列命題為真命題的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.已知四棱錐的正視圖和側(cè)視圖均為邊長(zhǎng)為2(單位:cm)的正三角形,俯視圖為正方形,則該四棱錐的體積(單位:)是()A. B. C. D.6.在正方體中,則直線與直線所成角大小為()A. B. C. D.7.正方體的棱長(zhǎng)為,為側(cè)面內(nèi)動(dòng)點(diǎn),且滿足,則△面積的最小值為()A. B. C. D.8.在直三棱柱中,.、分別是、的中點(diǎn),,則與所成角的余弦值為()A. B. C. D.9.如圖,在正方體ABCD﹣A1B1C1D1中,則以下結(jié)論錯(cuò)誤的是()A.BD∥平面CB1D1 B.AD⊥平面CB1D1C.AC1⊥BD D.異面直線AD與CB1所成的角為45°10.已知向量=(2m+1,3,m-1),=(2,m,-m),且,則實(shí)數(shù)m的值等于()A. B.-2C.0 D.或-211.正方體ABCD--A1B1C1D1中,E,F(xiàn)分別是線段BC,CD1的中點(diǎn),則直線A1B與直線EF的位置關(guān)系是()A.相交 B.異面C.平行 D.垂直12.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.0 C. D.13.把一個(gè)皮球放入如圖所示的由8根長(zhǎng)均為20cm的鐵絲接成的四棱錐形骨架內(nèi),使皮球的表面與8根鐵絲都有接觸點(diǎn)(皮球不變形),則皮球的半徑為()A.cm B.10cmC.cm D.30cm14.一種特殊的四面體叫做“鱉臑”,它的四個(gè)面均為直角三角形.如圖,在四面體PABC中,設(shè)E,F(xiàn)分別是PB,PC上的點(diǎn),連接AE,AF,EF(此外不再增加任何連線),則圖中直角三角形最多有()A.6個(gè) B.8個(gè)C.10個(gè) D.12個(gè)15.在四棱錐中,底面是邊長(zhǎng)為的正方形,且,則四棱錐外接球的表面積為()A. B. C. D.二、多選題16.給出下列命題,其中正確的有()A.空間任意三個(gè)向量都可以作為一組基底B.已知向量,則、與任何向量都不能構(gòu)成空間的一組基底C.已知空間向量,,則D.已知空間向量,,則向量在向量上的投影向量的坐標(biāo)是17.如圖,正方體的棱長(zhǎng)為4,以下結(jié)論正確的是()A.直線與是異面直線B.直線與平行C.直線與垂直D.三棱錐的體積為18.如圖,正方體的棱長(zhǎng)為1,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn)(包含端點(diǎn)),則下列說法正確的是()A.存在點(diǎn),使面B.二面角的平面角大小為C.的最小值是D.到平面的距離最大值是19.已知、是兩條不同的直線,、、是三個(gè)不同的平面.下列說法中正確的是()A.若,,,則 B.若,,則C.若,,,則 D.若,,,則20.在下列條件中,不能使M與A,B,C一定共面的是()A.=2--; B.;C.; D.+++=0;21.如圖,在正方體中,O為底面的中心,P為所在棱的中點(diǎn),M,N為正方體的頂點(diǎn).則滿足的是()A. B.C. D.22.設(shè)一空心球是在一個(gè)大球(稱為外球)的內(nèi)部挖去一個(gè)有相同球心的小球(稱為內(nèi)球),已知內(nèi)球面上的點(diǎn)與外球面上的點(diǎn)的最短距離為1,若某正方體的所有頂點(diǎn)均在外球面上?所有面均與內(nèi)球相切,則()A.該正方體的核長(zhǎng)為2 B.該正方體的體對(duì)角線長(zhǎng)為C.空心球的內(nèi)球半徑為 D.空心球的外球表面積為23.在正三棱柱中,,,與交于點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),則下列結(jié)論正確的是()A.B.存在點(diǎn),使得C.三棱錐的體積為D.直線與平面所成角的余弦值為第II卷(非選擇題)三、填空題24.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,M、N分別為BB1、BC的中點(diǎn),則三棱錐N-DMC1的體積為___________.25.已知正三棱錐的底面邊長(zhǎng)是,側(cè)棱與底面所成角為,則此三棱錐的體積為__.26.如圖,在直三棱柱中,∠ACB=90°,,則異面直線與AC所成角的余弦值是__________________.27.已知圓臺(tái)上底半徑為1,下底半徑為3,高為2,則此圓臺(tái)的外接球的表面積為______.28.如圖,已知平行六面體中,底面是邊長(zhǎng)為2的正方形,側(cè)棱長(zhǎng)為3,且,則__.29.如圖,在空間四邊形OABC中,,點(diǎn)M在OA上,且,N為BC的中點(diǎn),則用向量表示向量________.30.已知四棱錐P﹣ABCD的頂點(diǎn)都在球O的球面上,底面ABCD是邊長(zhǎng)為2的正方形,且PA⊥平面ABCD.若四棱錐P﹣ABCD的體積為,則球O的表面積為___________.任務(wù)二:中立模式(中檔)1-40題一、單選題1.在三棱錐P-ABC中,,△PAB,△PAC,△PBC的面積分別記為,且,則此三棱錐的內(nèi)切球的半徑為()A. B.C. D.2.在立體幾何探究課上,老師給每個(gè)小組分發(fā)了一個(gè)正四面體的實(shí)物模型,同學(xué)們?cè)谔骄康倪^程中得到了一些有趣的結(jié)論.已知直線平面,直線平面,F(xiàn)是棱BC上一動(dòng)點(diǎn),現(xiàn)有下列三個(gè)結(jié)論:①若分別為棱的中點(diǎn),則直線平面;②在棱BC上存在點(diǎn)F,使平面;③當(dāng)F為棱BC的中點(diǎn)時(shí),平面平面.其中所有正確結(jié)論的編號(hào)是()A.③ B.①③ C.①② D.②③3.已知圓臺(tái)上底面半徑為3,下底面半徑為4,高為7,若點(diǎn)A、B、C在下底面圓的圓周上,且,點(diǎn)Р在上底面圓的圓周上,則的最小值為()A.246 B.226 C.208 D.1984.北京大興國(guó)際機(jī)場(chǎng)的顯著特點(diǎn)之一是各種彎曲空間的運(yùn)用.刻畫空間的彎曲性是幾何研究的重要內(nèi)容.用曲率刻畫空間彎曲性,規(guī)定:多面體頂點(diǎn)的曲率等于與多面體在該點(diǎn)的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點(diǎn)的曲率均為零,多面體的總曲率等于該多面體各頂點(diǎn)的曲率之和,例如:正四面體在每個(gè)頂點(diǎn)有3個(gè)面角,每個(gè)面角是,所以正四面體在各頂點(diǎn)的曲率為,故其總曲率為,則四棱錐的總曲率為()A. B. C. D.5.如圖,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且,則三棱錐的體積為()A. B. C. D.不確定6.如圖已知正方體,點(diǎn)是對(duì)角線上的一點(diǎn)且,,則()A.當(dāng)時(shí),平面 B.當(dāng)時(shí),平面C.當(dāng)為直角三角形時(shí), D.當(dāng)?shù)拿娣e最小時(shí),7.如圖所示,已知空間四邊形的每條邊和對(duì)角線長(zhǎng)都等于a,點(diǎn)E、F、G分別為AB、AD、DC的中點(diǎn),則a2等于()A.2? B.2? C.2? D.2?8.如圖一,矩形中,,交對(duì)角線于點(diǎn),交于點(diǎn).現(xiàn)將沿翻折至的位置,如圖二,點(diǎn)為棱的中點(diǎn),則下列判斷一定成立的是()A. B.平面C.平面 D.平面平面9.點(diǎn)M是棱長(zhǎng)為3的正方體中棱的中點(diǎn),,動(dòng)點(diǎn)P在正方形(包括邊界)內(nèi)運(yùn)動(dòng),且平面,則的長(zhǎng)度范圍為()A. B. C. D.10.如圖,在正方體中,點(diǎn)M在線段(不包含端點(diǎn))上運(yùn)動(dòng),則下列判斷中正確的是()①平面;②異面直線與所成角的取值范圍是;③平面恒成立;④三棱錐的體積不是定值.A.①③ B.①② C.①②③ D.②④11.在四面體中,平面,,,,則該四面體的外接球的表面積是()A. B.100π C. D.20π12.已知圓錐的母線長(zhǎng)為,側(cè)面展開圖的圓心角為,則該圓錐外接球的表面積為()A. B. C. D.13.如圖,四棱錐的底面為矩形,底面,,,點(diǎn)是的中點(diǎn),過,,三點(diǎn)的平面與平面的交線為,則下列結(jié)論中正確的有()(1)平面;(2)平面;(3)直線與所成角的余弦值為;(4)平面截四棱錐所得的上、下兩部分幾何體的體積之比為.A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)14.在四棱錐中,平面平面,且是邊長(zhǎng)為2的正三角形,是正方形,則四棱錐外接球的表面積為()A. B. C. D.15.已知在正四面體ABCD中,E是AD的中點(diǎn),P是棱AC上的一動(dòng)點(diǎn),BP+PE的最小值為,則該四面體內(nèi)切球的體積為()A.π B.πC.4π D.π16.在棱長(zhǎng)為2的正方體中,點(diǎn),,,分別為棱,,,的中點(diǎn),若平面平面,且平面與棱,,分別交于點(diǎn),,,其中點(diǎn)是棱的中點(diǎn),則三棱錐的體積為()A.1 B. C. D.17.已知球,過其球面上,,三點(diǎn)作截面,若點(diǎn)到該截面的距離是球半徑的一半,且,,則球的表面積為()(注:球的表面積公式A. B. C. D.18.如圖,在正三棱柱ABC-A1B1C1中,AC=CC1,P是A1C1的中點(diǎn),則異面直線BC與AP所成角的余弦值為()A.0 B. C. D.19.一個(gè)四棱錐和一個(gè)三棱錐恰好可以拼接成一個(gè)三棱柱,這個(gè)四棱錐的底面為正方形,且底面邊長(zhǎng)與各側(cè)棱長(zhǎng)相等,這個(gè)三棱錐的底面邊長(zhǎng)與各側(cè)棱長(zhǎng)也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為、、,則()A. B. C. D.20.如圖,二面角的大小是,線段.,與所成的角為.直線與平面所成的角的正弦值是()A. B. C. D.二、多選題21.如圖,已知正方體,則四個(gè)推斷正確的是()A. B.C.平面平面 D.平面平面22.正方體的棱長(zhǎng)為2,E,F(xiàn),G分別為的中點(diǎn),則()A.直線與直線垂直 B.直線與平面平行C.平面截正方體所得的截面面積為 D.點(diǎn)C到平面的距離為23.正四棱錐的所有棱長(zhǎng)為2,用垂直于側(cè)棱的平面截該四棱錐,則()A.截面可以是三角形B.與底面所成的角為C.與底面所成的角為D.當(dāng)平面經(jīng)過側(cè)棱中點(diǎn)時(shí),截面分四棱錐得到的上下兩部分幾何體體積之比為3:124.如圖,等腰直角三角形的斜邊為正四面體的側(cè)棱,,直角邊繞斜邊旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,下列說法正確的是()A.三棱錐體積的最大值為B.三棱錐體積的最小值為C.存在某個(gè)位置,使得D.設(shè)二面角的平面角為,且,則25.如圖,在平行六面體中,以頂點(diǎn)A為端點(diǎn)的三條棱長(zhǎng)均為6,且它們彼此的夾角都是60°,下列說法中不正確的是()A.B.平面C.向量與的夾角是60°D.直線與AC所成角的余弦值為26.正方體中,是棱的中點(diǎn),在側(cè)面上運(yùn)動(dòng),且滿足平面.以下命題正確的有()A.側(cè)面上存在點(diǎn),使得B.直線與直線所成角可能為C.平面與平面所成銳二面角的正切值為D.設(shè)正方體棱長(zhǎng)為1,則過點(diǎn),,的平面截正方體所得的截面面積最大為27.如圖,邊長(zhǎng)為1的正方形ABCD所在平面與正方形ABEF所在平面互相垂直,動(dòng)點(diǎn)M,N分別在正方形對(duì)角線AC和BF上移動(dòng),且.則下列結(jié)論中正確的有()A.當(dāng)時(shí),ME與CN相交B.MN始終與平面BCE平行C.異面直線AC與BF所成的角為D.當(dāng)時(shí),MN的長(zhǎng)最小,最小為28.(多選)如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論正確的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.異面直線AD與CB1所成的角為60°29.已知四邊形ABCD為正方形,GD⊥平面ABCD,四邊形DGEA與四邊形DGFC也都為正方形,連接EF,F(xiàn)B,BE,H為BF的中點(diǎn),則下列結(jié)論正確的是()A.DE⊥BFB.EF與CH所成角為C.EC⊥平面DBFD.BF與平面ACFE所成角為30.下圖中正方體邊長(zhǎng)為2,則下列說法正確的是()A.平面平面B.正方體外接球與正四面體外接球半徑相等均為C.正四面體內(nèi)切球半徑為D.四面體內(nèi)切球半徑為第II卷(非選擇題)三、填空題31.空間四面體中,,,,直線和所成的角為,則該四面體的外接球的表面積為__.32.如圖,A、B、C、D、P是球O上5個(gè)點(diǎn),ABCD為正方形,球心O在平面ABCD內(nèi),,,則PA與CD所成角的余弦值為______.33.已知圓錐、圓柱的底面半徑和體積都相等,則它們的軸截面的面積之比的比值是___________34.中國(guó)有悠久的金石文化,印信是金石文化的代表之一.下左圖是南北朝官員獨(dú)孤信的印信,它是由正方形和正三角形圍成.右圖是根據(jù)這只印信作出的直觀圖,直觀圖的所有頂點(diǎn)都在一正方體的表面上(如果一個(gè)正八邊形的八個(gè)頂點(diǎn)都在這個(gè)正方體同一個(gè)側(cè)面的四條棱上,那么這個(gè)八邊形的邊長(zhǎng)就等于這個(gè)直觀圖的棱長(zhǎng)).若這個(gè)正方體的所有頂點(diǎn)都在半徑為的球面上,則這只印信的表面積為__________.35.如圖,在直三棱柱中,,,已知G與E分別為和的中點(diǎn),D和F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若,則線段DF的長(zhǎng)度的平方取值范圍為__________.36.如圖,在長(zhǎng)方體中,已知,點(diǎn),分別在棱,上.二面角的大小為30°.若三棱錐的體積為,則三棱錐的外接球的表面積為___________.37.異面直線a、b所成角為,直線c與a、b垂直且分別交于A、B,點(diǎn)C、D分別在直線a、b上,若,,,則________.38.已知四棱錐S﹣ABCD的底面是邊長(zhǎng)為4的正方形,SD⊥面ABCD,點(diǎn)M、N分別是AD、CD的中點(diǎn),P為SD上一點(diǎn),且SD=3PD=3,H為正方形ABCD內(nèi)一點(diǎn),若SH∥面PMN,則SH的最小值為__.39.如圖,在中,,,是棱的中點(diǎn),以為折痕把折疊,使點(diǎn)到達(dá)點(diǎn)的位置,則當(dāng)三棱錐體積最大時(shí),其外接球的表面積為___________.40.在如圖所示的實(shí)驗(yàn)裝置中,正方形框架的邊長(zhǎng)都是,且平面平面,活動(dòng)彈子分別在正方形對(duì)角線上移動(dòng),若,則長(zhǎng)度的最小值為__________.任務(wù)三:邪惡模式(困難)1-30題一、單選題1.已知四面體ABCD的所有棱長(zhǎng)均為,M,N分別為棱AD,BC的中點(diǎn),F(xiàn)為棱AB上異于A,B的動(dòng)點(diǎn).有下列結(jié)論:①線段MN的長(zhǎng)度為1;②若點(diǎn)G為線段MN上的動(dòng)點(diǎn),則無論點(diǎn)F與G如何運(yùn)動(dòng),直線FG與直線CD都是異面直線;③的余弦值的取值范圍為;④周長(zhǎng)的最小值為.其中正確結(jié)論的為()A.①② B.②③ C.③④ D.①④2.已知三棱錐,其中平面,,,.已知點(diǎn)為棱(不含端點(diǎn))上的動(dòng)點(diǎn),若光線從點(diǎn)出發(fā),依次經(jīng)過平面與平面反射后重新回到點(diǎn),則光線經(jīng)過路徑長(zhǎng)度的取值范圍為()A. B.C. D.3.如圖,已知銳二面角的大小為,,,,,,,C,D為AB,MN的中點(diǎn),若,記AN,CD與半平面所成角分別為,,則()A., B.,C., D.,4.在棱長(zhǎng)為2的正方體中,點(diǎn)是對(duì)角線上的點(diǎn)(點(diǎn)與不重合),有以下四個(gè)結(jié)論:①存在點(diǎn),使得平面平面;②存在點(diǎn),使得平面;③若的周長(zhǎng)為L(zhǎng),則L的最小值為;④若的面積為,則.則正確的結(jié)論為()A.①③ B.①②③ C.①②④ D.②④5.在棱長(zhǎng)為1的正方體中,點(diǎn)P是正方體棱上一點(diǎn),若滿足的點(diǎn)P的個(gè)數(shù)為4,則d的取值范圍為()A. B. C. D.6.在三棱錐中,,點(diǎn)在面上的投影是的垂心,二面角的平面角記為,二面角的平面角記為,二面角的平面角記為,則()A. B.C. D.7.已知正方體的棱長(zhǎng)為1,是的中點(diǎn),是棱上一點(diǎn)(不包括端點(diǎn)),則下列結(jié)論錯(cuò)誤的是()A.三棱錐的體積為定值B.存在點(diǎn),使得直線與直線相交C.當(dāng)是棱的中點(diǎn)時(shí),直線與直線所成的角為D.平面截正方體所得的截面是五邊形8.如圖,在等邊三角形中,分別是線段上異于端點(diǎn)的動(dòng)點(diǎn),且,現(xiàn)將三角形沿直線折起,使平面平面,當(dāng)從滑動(dòng)到的過程中,則下列選項(xiàng)中錯(cuò)誤的是()A.的大小不會(huì)發(fā)生變化 B.二面角的平面角的大小不會(huì)發(fā)生變化C.與平面所成的角變大 D.與所成的角先變小后變大9.蹴鞠,又名“蹴球”“蹴圓”等,“蹴”有用腳蹴、踢的含義,“鞠”最早系外包皮革、內(nèi)飾米糠的球,因而“蹴鞠”就是指古人以腳蹴、踢皮球的活動(dòng),類似今日的踢足球活動(dòng).如圖所示,已知某“鞠”的表面上有四個(gè)點(diǎn),,,滿足,,則該“鞠”的表面積為()A. B.C. D.10.已知在中,斜邊,,若將沿斜邊上的中線折起,使平面平面,則三棱錐的外接球的表面積為()A. B. C. D.11.如圖,在長(zhǎng)方體中,,,,點(diǎn)是的中點(diǎn),點(diǎn)為棱上的動(dòng)點(diǎn),則平面與平面所成的銳二面角正切的最小值是()A. B.C. D.12.已知正方體的棱長(zhǎng)為,M,N為體對(duì)角線的三等分點(diǎn),動(dòng)點(diǎn)P在三角形內(nèi),且三角形的面積,則點(diǎn)P的軌跡長(zhǎng)度為()A. B. C. D.13.已知半球與圓臺(tái)有公共的底面,圓臺(tái)上底面圓周在半球面上,半球的半徑為1,則圓臺(tái)側(cè)面積取最大值時(shí),圓臺(tái)母線與底面所成角的余弦值為()A. B. C. D.14.如圖,等腰直角中,,點(diǎn)為平面外一動(dòng)點(diǎn),滿足,,給出下列四個(gè)結(jié)論:①存在點(diǎn),使得平面平面;②存在點(diǎn),使得平面平面;③設(shè)的面積為,則的取值范圍是;④設(shè)二面角的大小為,則的取值范圍是.其中正確結(jié)論是()A.①③ B.①④ C.②③ D.②④15.已知AB、CD是圓O的兩條直徑,且,如圖1,沿AB折起,使兩個(gè)半圓面所在的平面垂直,折到點(diǎn)位置,如圖2.設(shè)直線與直線OC所成的角為,則()A.且 B.且C.且 D.且二、多選題16.如圖,底面ABCD為邊長(zhǎng)是4的正方形,半圓面底面ABCD.點(diǎn)P為半圓弧(不含A,D點(diǎn))一動(dòng)點(diǎn).下列說法正確的是()A.三梭錐P—ABD的每個(gè)側(cè)面三角形都是直角三角形B.三棱錐P—ABD體積的最大值為C.三棱錐P—ABD外接球的表面積為定值D.直線PB與平面ABCD所成最大角的正弦值為17.已知正方體的棱長(zhǎng)為2,動(dòng)點(diǎn)在正方形內(nèi),則()A.若,則三棱錐的的外接球表面積為B.若平面,則不可能垂直C.若平面,則點(diǎn)的位置唯一D.若點(diǎn)為中點(diǎn),則三棱錐的體積是三棱錐體積的一半18.為弘揚(yáng)中華民族優(yōu)秀傳統(tǒng)文化,某學(xué)校組織了《誦經(jīng)典,獲新知》的演講比賽,本次比賽的冠軍獎(jiǎng)杯由一個(gè)銅球和一個(gè)托盤組成,如圖①,已知球的體積為,托盤由邊長(zhǎng)為的正三角形銅片沿各邊中點(diǎn)的連線垂直向上折疊而成,如圖②.則下列結(jié)論正確()A.經(jīng)過三個(gè)頂點(diǎn)的球的截面圓的面積為B.異面直線與所成的角的余弦值為C.多面體的體積為D.球離球托底面的最小距離為19.已知邊長(zhǎng)為的菱形中,,將沿翻折,下列說法正確的是()A.在翻折的過程中,直線,始終不可能垂直B.在翻折的過程中,三棱錐體積最大值為C.在翻折過程中,三棱錐表面積最大時(shí),其內(nèi)切球表面積為D.在翻折的過程中,點(diǎn)在面上的投影為,為棱上的一個(gè)動(dòng)點(diǎn),的最小值為20.如圖,是由具有公共直角邊的兩塊直角三角板組成的三角形,,.現(xiàn)將沿斜邊翻折成△不在平面內(nèi)).若,分別為和的中點(diǎn),則在翻折過程中,下列結(jié)論正確的是()A.平面B.與不可能垂直C.二面角正切值的最大值為D.直線與所成角的取值范圍為21.已知邊長(zhǎng)為的菱形中,,將沿翻折,下列說法正確的是()A.在翻折的過程中,直線,可能相互垂直B.在翻折的過程中,三棱錐體積最大值為C.在翻折的過程中,三棱錐表面積最大時(shí),其內(nèi)切球表面積為D.在翻折的過程中,點(diǎn)在面上的投影為,為棱上的一個(gè)動(dòng)點(diǎn),的最小值為22.已知正方體的棱長(zhǎng)為2,是底面的中心,是棱上一點(diǎn)(不與端點(diǎn)重合),則()A.平面截正方體所得截面一定是梯形B.存在點(diǎn),使得三棱錐的體積為C.存在點(diǎn),使得與相交D.當(dāng)是棱的中點(diǎn)時(shí),平面截正方體外接球所得截面圓的面積23.在四面體中,,,直線,所成的角為60°,,,則四面體的外接球表面積為()A. B. C. D.第II卷(非選擇題)三、填空題24.已知一正三棱錐的體積為,設(shè)其側(cè)面與底面所成銳二面角為,則當(dāng)?shù)扔赺_____時(shí),側(cè)面積最?。?5.球面幾何學(xué)是幾何學(xué)的一個(gè)重要分支,在航海、航空、衛(wèi)星定位等面都有廣泛的應(yīng)用,如圖,A,B,C是球面上不同的大圓(大圓是過球心的平面與球面的交線)上的三點(diǎn),經(jīng)過這三個(gè)點(diǎn)中任意兩點(diǎn)的大圓的劣弧分別為,由這三條劣弧圍成的圖形稱為球面.已知地球半徑為R,北極為點(diǎn)N,P,Q是地球表面上的兩點(diǎn)若P,Q在赤道上,且,則球面的面積為________;若,則球面的面積為________.26.如圖,在矩形中,是邊的中點(diǎn),將沿直線折成,使得二面角的平面角為銳角,點(diǎn)在線段上運(yùn)動(dòng)(包括端點(diǎn)),當(dāng)直線與平面所成角最大時(shí),在底面內(nèi)的射影面積為___________.27.已知三棱錐的三條側(cè)棱兩兩垂直,與底面成角,是平面內(nèi)任意一點(diǎn),則的最小值是________.28.已知正方體的棱長(zhǎng)為2,點(diǎn)E是棱的中點(diǎn),點(diǎn)在平面內(nèi),若,,則的最小值為_________.29.在棱長(zhǎng)為的正方體中,過對(duì)角線的一個(gè)平面交于,交于,得四邊形,給出下列結(jié)論:①四邊形有可能為梯形;②四邊形有可能為菱形;③四邊形在底面內(nèi)的投影一定是正方形;④四邊形有可能垂直于平面;⑤四邊形面積的最小值為.其中正確結(jié)論的序號(hào)是_____________30.在棱長(zhǎng)為4的正方體中,E,F(xiàn)分別是和的中點(diǎn),經(jīng)過點(diǎn)A,E,F(xiàn)的平面把正方體截成兩部分,則截面的周長(zhǎng)為________.專題19立體幾何綜合小題必刷100題任務(wù)一:善良模式(基礎(chǔ))1-30題一、單選題1.已知正四棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)均為2,則該正四棱錐的體積為()A. B. C. D.【答案】A【分析】計(jì)算出正四棱錐的底面積,然后利用錐體的體積公式可求出該正四棱錐的體積.【詳解】正四棱錐的底面積為,正四棱錐的高為因此,該正四棱錐的體積為.故選:A.2.已知,為兩條不同的直線,,為兩個(gè)不同的平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,,則 D.若,,則【答案】D【分析】利用線面平行、面面平行的判定、性質(zhì)定理,依次分析即得解【詳解】選項(xiàng)A:有可能出現(xiàn)的情況;選項(xiàng)B:和有可能異面;選項(xiàng)C:和有可能相交;選項(xiàng)D:由,,得直線和平面沒有公共點(diǎn),所以,故選:D3.如圖,空間四邊形中,點(diǎn)在線段上,且,為的中點(diǎn),,則,,的值分別為()A.,, B.,, C.,, D.,,【答案】B【分析】利用空間向量的基本定理求解.【詳解】因?yàn)椋?,所以,?故選:B.4.已知,,是三個(gè)不同的平面,,是兩條不同的直線,下列命題為真命題的是()A.若,,則 B.若,,則C.若,,則 D.若,,則【答案】C【分析】利用空間中點(diǎn)線面之間的位置關(guān)系即可對(duì)每個(gè)選項(xiàng)做出判斷,從而選出正確選項(xiàng).【詳解】對(duì)于選項(xiàng)A:若,,則與平行或相交,故選項(xiàng)A不正確;對(duì)于選項(xiàng)B:若,,則與可平行、異面、或相交,故選項(xiàng)B不正確;對(duì)于選項(xiàng)C:若,,則,垂直于同一平面的兩個(gè)直線平行,故選項(xiàng)C正確;對(duì)于選項(xiàng)D:若,,則與平行或相交,故選項(xiàng)D不正確.故選:C5.已知四棱錐的正視圖和側(cè)視圖均為邊長(zhǎng)為2(單位:cm)的正三角形,俯視圖為正方形,則該四棱錐的體積(單位:)是()A. B. C. D.【答案】B【分析】根據(jù)四棱錐是正四棱錐求解.【詳解】如圖所示:由題意知:四棱錐是正四棱錐,因?yàn)樗睦忮F的正視圖和側(cè)視圖均為邊長(zhǎng)為2(單位:cm)的正三角形,所以,則正四棱錐的高為:,又因?yàn)楦┮晥D為正方形,所以,故選:B6.在正方體中,則直線與直線所成角大小為()A. B. C. D.【答案】C【分析】設(shè)正方體的棱長(zhǎng)為,連接,證明可得或其補(bǔ)角即為直線與直線所成角,在中求即可求解.【詳解】設(shè)正方體的棱長(zhǎng)為,連接,因?yàn)榍?,所以四邊形是平行四邊形,可得,所以或其補(bǔ)角即為直線與直線所成角,在中,,所以,所以直線與直線所成角大小為,故選:C.7.正方體的棱長(zhǎng)為,為側(cè)面內(nèi)動(dòng)點(diǎn),且滿足,則△面積的最小值為()A. B. C. D.【答案】B【分析】建立空間直角坐標(biāo)系如圖所示,設(shè)由,得出點(diǎn)的軌跡方程,由幾何性質(zhì)求得,再根據(jù)垂直關(guān)系求出△面積的最小值.【詳解】以點(diǎn)為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,如圖所示:則,,設(shè)所以,得,所以因?yàn)槠矫?,所以故△面積的最小值為故選:B8.在直三棱柱中,.、分別是、的中點(diǎn),,則與所成角的余弦值為()A. B. C. D.【答案】D【分析】以C為坐標(biāo)原點(diǎn),以CB、CA、方向分別為x、y、z軸正方向,建立空間坐標(biāo)系,如圖,設(shè),分別求出的坐標(biāo),根據(jù)空間向量的數(shù)量積求出即可.【詳解】以C為坐標(biāo)原點(diǎn),以CB、CA、方向分別為x、y、z軸正方向,建立空間坐標(biāo)系,如圖,設(shè),則,所以,故選:D9.如圖,在正方體ABCD﹣A1B1C1D1中,則以下結(jié)論錯(cuò)誤的是()A.BD∥平面CB1D1 B.AD⊥平面CB1D1C.AC1⊥BD D.異面直線AD與CB1所成的角為45°【答案】B【分析】利用直線與平面平移以及垂直的關(guān)系,結(jié)合異面直線所成角判斷命題的真假即可.【詳解】解:A,在正方體ABCD﹣A1B1C1D1中,①BD∥B1D1,B1D1?平面CB1D1;BD?平面CB1D1;所以BD∥平面CB1D1;A正確;B,;AD∥A1D1,且⊥平面,所以⊥平面,又平面與平面CB1D1不平行,所以AD與平面CB1D1不平行,;B不正確;C,AC1在底面ABCD上的射影AC,BD⊥AC;所以AC1⊥BD;C正確;D,根據(jù)正方體的性質(zhì)可得所以異面直線AD與CB1所成的角即為直線與CB1所成的角,由,所以異面直線AD與CB1所成的角為45°;D正確故選:B.10.已知向量=(2m+1,3,m-1),=(2,m,-m),且,則實(shí)數(shù)m的值等于()A. B.-2C.0 D.或-2【答案】B【分析】利用空間向量平行的坐標(biāo)表示,即可求得結(jié)果.【詳解】當(dāng)m=0時(shí),=(1,3,-1),=(2,0,0),與不平行,∴m≠0,∵,∴,解得m=-2.故選:B11.正方體ABCD--A1B1C1D1中,E,F(xiàn)分別是線段BC,CD1的中點(diǎn),則直線A1B與直線EF的位置關(guān)系是()A.相交 B.異面C.平行 D.垂直【答案】A【分析】連接與交于點(diǎn)F,易得是平行四邊形,根據(jù)平面的基本性質(zhì)即可判斷直線與直線的位置關(guān)系.【詳解】如圖所示,連接與交于點(diǎn)F,由題意,易得四邊形是平行四邊形,在平行四邊形中,E,F(xiàn)分別是線段的中點(diǎn),∴,又且共面,則直線與直線相交.故選:A.12.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.0 C. D.【答案】B【分析】先用余弦定理求出,再由勾股定理可證,可所以兩兩垂直,如圖建立空間直角坐標(biāo)系,求出各點(diǎn)坐標(biāo)以及、的坐標(biāo),利用空間向量夾角公式計(jì)算即可求解.【詳解】因?yàn)橹比庵?,,,,在中,由余弦定理可得:,所以,所以,所以,進(jìn)而可得兩兩垂直,所以以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,,,,,,所以,設(shè)異面直線與所成角的平面角為,則異面直線與所成角的余弦值為:,故選:B.13.把一個(gè)皮球放入如圖所示的由8根長(zhǎng)均為20cm的鐵絲接成的四棱錐形骨架內(nèi),使皮球的表面與8根鐵絲都有接觸點(diǎn)(皮球不變形),則皮球的半徑為()A.cm B.10cmC.cm D.30cm【答案】B【分析】判斷出球心的位置,由此計(jì)算出球的半徑.【詳解】依題意可知該四棱錐是正四棱錐,且平面,則.,,所以,到的距離都是,在等腰直角三角形中,到的距離為,同理可得到的距離也是.所以是皮球的球心,且皮球的半徑為.故選:B14.一種特殊的四面體叫做“鱉臑”,它的四個(gè)面均為直角三角形.如圖,在四面體PABC中,設(shè)E,F(xiàn)分別是PB,PC上的點(diǎn),連接AE,AF,EF(此外不再增加任何連線),則圖中直角三角形最多有()A.6個(gè) B.8個(gè)C.10個(gè) D.12個(gè)【答案】C【分析】由題設(shè),若四面體PABC為“鱉臑”,應(yīng)用線面、面面垂直的判定、性質(zhì)只需AE⊥EF、AE⊥PC、EF⊥PC,即PAEF也是“鱉臑”,即可保證直角三角形最多,進(jìn)而確定個(gè)數(shù)即可.【詳解】為使題圖中有盡可能多的直角三角形,設(shè)四面體PABC為“鱉臑”,其中PA⊥面ABC,BC面ABC,則PA⊥BC,又AB⊥BC,ABPA=A,∴CB⊥面PAB.若AE⊥PB,EF⊥PC:由CB⊥面PAB,BC面PBC,則面PAB⊥面PBC,又AE面PAB,面PAB∩面PBC=PB,∴AE⊥面PBC,EF、PC面PBC,則AE⊥EF且AE⊥PC,又EF⊥PC,∴四面體PAEF也是“鱉臑”,則10個(gè)三角形全是直角三角形,故選:C.15.在四棱錐中,底面是邊長(zhǎng)為的正方形,且,則四棱錐外接球的表面積為()A. B. C. D.【答案】C【分析】利用勾股定理判斷平面,過正方形的中心作垂線,再過中點(diǎn)作此垂線的垂線,交點(diǎn)即為外接球的球心,求出外接球半徑,由表面積公式即可求解.【詳解】由題意可知,,所以,,又,所以平面,過正方形的中心作垂線,再過中點(diǎn)作此垂線的垂線,交點(diǎn)為,此點(diǎn)即為外接球的球心,則外接球半徑,所以四棱錐外接球的表面積.故選:C二、多選題16.給出下列命題,其中正確的有()A.空間任意三個(gè)向量都可以作為一組基底B.已知向量,則、與任何向量都不能構(gòu)成空間的一組基底C.已知空間向量,,則D.已知空間向量,,則向量在向量上的投影向量的坐標(biāo)是【答案】BD【分析】對(duì)選項(xiàng)A,B,根據(jù)空間向量基底概念即可判斷A錯(cuò)誤,B正確,對(duì)選項(xiàng)C,根據(jù)空間向量平行的坐標(biāo)運(yùn)算即可判斷C錯(cuò)誤,對(duì)選項(xiàng)D,根據(jù)投影向量概念求解即可.【詳解】對(duì)選項(xiàng)A,因?yàn)榭臻g中只有不共面的三個(gè)向量可以作為一組基底,故A錯(cuò)誤.對(duì)選項(xiàng)B,因?yàn)?,則、與任何向量都是共面向量,故B正確.對(duì)選項(xiàng)C,,,因?yàn)?,所以、不平行,故C錯(cuò)誤.對(duì)選項(xiàng)D,,,所以向量在向量上的投影向量為.故D正確.故選:BD17.如圖,正方體的棱長(zhǎng)為4,以下結(jié)論正確的是()A.直線與是異面直線B.直線與平行C.直線與垂直D.三棱錐的體積為【答案】AD【分析】A選項(xiàng)結(jié)合異面直線的定義即可判斷;B證得即可判斷;C由直線與是矩形的兩條對(duì)角線即可判斷;D用正方體的體積減去四個(gè)三棱錐的體積即可求出結(jié)果判斷.【詳解】直線在平面內(nèi)與沒有交點(diǎn),所以直線與是異面直線,故A項(xiàng)正確;因?yàn)椋遥运倪呅螢槠叫兴倪?,因此,又因?yàn)?,所?故B項(xiàng)錯(cuò)誤;直線與是矩形的兩條對(duì)角線,不垂直,故C項(xiàng)錯(cuò)誤;.故D項(xiàng)正確.故選:AD.18.如圖,正方體的棱長(zhǎng)為1,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn)(包含端點(diǎn)),則下列說法正確的是()A.存在點(diǎn),使面B.二面角的平面角大小為C.的最小值是D.到平面的距離最大值是【答案】AC【分析】對(duì)于A,當(dāng)與重合時(shí)可得結(jié)論,對(duì)于B,二面角就是二面角,從而可求出結(jié)果,對(duì)于C,如圖沿棱展開面為面,利用兩點(diǎn)之間線段最短判斷,對(duì)于D,當(dāng)與重合時(shí),點(diǎn)到面的距離最大,從而可求得結(jié)果【詳解】對(duì)于A,當(dāng)與重合時(shí),,根據(jù)線面平行的判定,可得使面,故正確;對(duì)于B,二面角就是二面角,其平面角大小為.故錯(cuò);對(duì)于C,如圖沿棱展開面為面,使點(diǎn),,,,,共面,則的最小值為,故正確;對(duì)于D,當(dāng)與重合時(shí),垂直平面,此時(shí)點(diǎn)到面距離最大值為,故錯(cuò).故選:AC.19.已知、是兩條不同的直線,、、是三個(gè)不同的平面.下列說法中正確的是()A.若,,,則 B.若,,則C.若,,,則 D.若,,,則【答案】ACD【分析】對(duì)于A,利用線面平行的性質(zhì)定理判斷,對(duì)于B,利用線面平行的判定定理判斷,對(duì)于C,利用線面垂直的判定定理判斷即可,對(duì)于D,利用面面平行的判定方法判斷【詳解】由線面平行的性質(zhì)定理可知,A正確;若∥∥,則∥或,即B錯(cuò)誤;設(shè)的法向量分別為,若,則,又,則∥,∥,所以,即C正確;若,則∥,又∥,則∥,即D正確.故選:ACD20.在下列條件中,不能使M與A,B,C一定共面的是()A.=2--; B.;C.; D.+++=0;【答案】ABD【分析】根據(jù)四點(diǎn)共面的條件對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】與,,一定共面的充要條件是,對(duì)于A選項(xiàng),由于,所以不能得出共面,對(duì)于B選項(xiàng),由于,所以不能得出共面,對(duì)于C選項(xiàng),由于,則為共面向量,所以共面,對(duì)于D選項(xiàng),由得,而,所以不能得出共面.故選:ABD21.如圖,在正方體中,O為底面的中心,P為所在棱的中點(diǎn),M,N為正方體的頂點(diǎn).則滿足的是()A. B.C. D.【答案】BC【分析】根據(jù)線面垂直的判定定理可得BC的正誤,平移直線構(gòu)造所考慮的線線角后可判斷AD的正誤.【詳解】設(shè)正方體的棱長(zhǎng)為,對(duì)于A,如圖(1)所示,連接,則,故(或其補(bǔ)角)為異面直線所成的角,在直角三角形,,,故,故不成立,故A錯(cuò)誤.對(duì)于B,如圖(2)所示,取的中點(diǎn)為,連接,,則,,由正方體可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正確.對(duì)于C,如圖(3),連接,則,由B的判斷可得,故,故C正確.對(duì)于D,如圖(4),取的中點(diǎn),的中點(diǎn),連接,則,因?yàn)?,故,故,所以或其補(bǔ)角為異面直線所成的角,因?yàn)檎襟w的棱長(zhǎng)為2,故,,,,故不是直角,故不垂直,故D錯(cuò)誤.故選:BC.22.設(shè)一空心球是在一個(gè)大球(稱為外球)的內(nèi)部挖去一個(gè)有相同球心的小球(稱為內(nèi)球),已知內(nèi)球面上的點(diǎn)與外球面上的點(diǎn)的最短距離為1,若某正方體的所有頂點(diǎn)均在外球面上?所有面均與內(nèi)球相切,則()A.該正方體的核長(zhǎng)為2 B.該正方體的體對(duì)角線長(zhǎng)為C.空心球的內(nèi)球半徑為 D.空心球的外球表面積為【答案】BD【分析】設(shè)內(nèi)外球半徑分別為r,R,利用正方體的對(duì)角線求得,根據(jù)兩球上點(diǎn)的距離最小值為,求解后得到r,R,進(jìn)而求得正方體的對(duì)角線和外接球的表面積.【詳解】設(shè)內(nèi)外球半徑分別為r,R,則正方體的棱長(zhǎng)為,體對(duì)角線長(zhǎng)為,∴,又由題知,所以,,∴正方體棱長(zhǎng)為,體對(duì)角線長(zhǎng)為,∴外接球表面積為,故選:BD.23.在正三棱柱中,,,與交于點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),則下列結(jié)論正確的是()A.B.存在點(diǎn),使得C.三棱錐的體積為D.直線與平面所成角的余弦值為【答案】AC【分析】A.利用空間向量運(yùn)算求解判斷;B.利用空間向量運(yùn)算求解判斷;C.利用等體積法求解判斷;D.利用線面角的求解判斷.【詳解】由題意,畫出正三棱柱如圖所示,向量,故A正確;假設(shè)存在點(diǎn),設(shè),,所以.因?yàn)?,所?解得.故B錯(cuò)誤;因?yàn)檎庵?,所以,所以,所以,故C正確;設(shè)中點(diǎn)為,所以,三棱柱是正三棱柱,所以平面,所以即與平面所成的角,.故D錯(cuò)誤.故選:AC.第II卷(非選擇題)三、填空題24.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,M、N分別為BB1、BC的中點(diǎn),則三棱錐N-DMC1的體積為___________.【答案】1【分析】利用等體法以及三棱錐的體積公式即可求解.【詳解】.故答案為:125.已知正三棱錐的底面邊長(zhǎng)是,側(cè)棱與底面所成角為,則此三棱錐的體積為__.【答案】【分析】過作平面交于點(diǎn),延長(zhǎng)交于,在中,求得,根據(jù)平面,得到,求得,結(jié)合體積公式,即可求解.【詳解】如圖所示,過作平面交于點(diǎn),延長(zhǎng)交于,所以點(diǎn)是的中心,所以是等邊的一條高,其中邊長(zhǎng)為,所以,可得,因?yàn)槠矫?,所以,在直角中,可得,由的邊長(zhǎng)為,可得,所以三棱錐的體積為.故答案為:.26.如圖,在直三棱柱中,∠ACB=90°,,則異面直線與AC所成角的余弦值是__________________.【答案】【分析】由AC∥,知是異面直線與AC所成角(或所成角的補(bǔ)角),由此能求出異面直線與AC所成角的余弦值.【詳解】解:連結(jié),∵AC∥,∴是異面直線與AC所成角(或所成角的補(bǔ)角),∵在直三棱柱中,∠ACB=90°,,∴,,,,∴∴異面直線與AC所成角的余弦值為.故答案為:.27.已知圓臺(tái)上底半徑為1,下底半徑為3,高為2,則此圓臺(tái)的外接球的表面積為______.【答案】【分析】先畫出圓臺(tái)的軸截面,利用圓心到上底圓周上一點(diǎn)等于外接球半徑,圓心到下底圓周上一點(diǎn)等于外接球半徑,建立方程,解出外接球半徑,求出外接球表面積.【詳解】如圖所示,設(shè)外接球半徑為r,球心到上底的距離為h,則球心到下底的距離為則有,,解得,.所以外接球的表面積為.故答案為:28.如圖,已知平行六面體中,底面是邊長(zhǎng)為2的正方形,側(cè)棱長(zhǎng)為3,且,則__.【答案】【分析】由空間向量的加法法則有,然后平方,轉(zhuǎn)化為數(shù)量積運(yùn)算可得.【詳解】平行六面體中,,..故答案為:.29.如圖,在空間四邊形OABC中,,點(diǎn)M在OA上,且,N為BC的中點(diǎn),則用向量表示向量________.【答案】【分析】根據(jù),由此能求出結(jié)果.【詳解】∵在空間四邊形OABC中,,點(diǎn)M在OA上,且,N為BC的中點(diǎn),∴.故答案為:.30.已知四棱錐P﹣ABCD的頂點(diǎn)都在球O的球面上,底面ABCD是邊長(zhǎng)為2的正方形,且PA⊥平面ABCD.若四棱錐P﹣ABCD的體積為,則球O的表面積為___________.【答案】【分析】由題意,畫出示意圖,四棱錐P﹣ABCD的體積,,,,球O的半徑,進(jìn)而求解.【詳解】解:由題意,畫出示意圖如圖:則正方形ABCD面積S=4,∵四棱錐P﹣ABCD的體積,∴,,球O的半徑球O的表面積:.故答案為:任務(wù)二:中立模式(中檔)1-40題一、單選題1.在三棱錐P-ABC中,,△PAB,△PAC,△PBC的面積分別記為,且,則此三棱錐的內(nèi)切球的半徑為()A. B.C. D.【答案】B【分析】根據(jù)三角形面積公式求出面積,聯(lián)立方程求出棱長(zhǎng),再求出棱錐高得出棱錐體積,由等體積法求出內(nèi)切球的半徑即可.【詳解】,,,解得,,由余弦定理可得,,取的中點(diǎn),連接,,如圖,可得,,,,,所以,所以平面ABC,內(nèi)切球半徑,故選:B2.在立體幾何探究課上,老師給每個(gè)小組分發(fā)了一個(gè)正四面體的實(shí)物模型,同學(xué)們?cè)谔骄康倪^程中得到了一些有趣的結(jié)論.已知直線平面,直線平面,F(xiàn)是棱BC上一動(dòng)點(diǎn),現(xiàn)有下列三個(gè)結(jié)論:①若分別為棱的中點(diǎn),則直線平面;②在棱BC上存在點(diǎn)F,使平面;③當(dāng)F為棱BC的中點(diǎn)時(shí),平面平面.其中所有正確結(jié)論的編號(hào)是()A.③ B.①③ C.①② D.②③【答案】A【分析】將正四面體放在正方體中,如圖,由正方體的性質(zhì)判斷各選項(xiàng).【詳解】可將正四面體放在正方體中研究,如圖,對(duì)于①,由直線平面,直線平面,知平面是與左右兩個(gè)側(cè)面平行的平面,是前后兩個(gè)側(cè)面的中心(對(duì)角線交點(diǎn)),則直線平面或直線平面,故①錯(cuò)誤.對(duì)于②,正方體的左、右兩個(gè)側(cè)面與平面平行,因此,與平面垂直的直線只能是與其四條側(cè)棱平行或重合的直線,故②錯(cuò)誤.對(duì)于③,平面就是平面,由與側(cè)面垂直,得面面垂直,故③正確,故選:A.3.已知圓臺(tái)上底面半徑為3,下底面半徑為4,高為7,若點(diǎn)A、B、C在下底面圓的圓周上,且,點(diǎn)Р在上底面圓的圓周上,則的最小值為()A.246 B.226 C.208 D.198【答案】D【分析】問題可轉(zhuǎn)化為三棱錐且三棱錐有外接球,求轉(zhuǎn)化為求的最值,再轉(zhuǎn)化為利用向量求解即可.【詳解】如圖,ABC的外心是AC中點(diǎn),點(diǎn)P到底面ABC的距離為7,設(shè)Р所在截面圓的圓心為,此截面與平面ABC平行,球心在上,,則,設(shè)P在平面ABC上的射影為Q,則Q在以為圓心,3為半徑的圓,因?yàn)镻Q⊥平面ABC,所以PQ與平面ABC內(nèi)所有直線都垂直,PQ=7,所以,當(dāng)反向時(shí),取得最小值-12,所以的最小值故選:D4.北京大興國(guó)際機(jī)場(chǎng)的顯著特點(diǎn)之一是各種彎曲空間的運(yùn)用.刻畫空間的彎曲性是幾何研究的重要內(nèi)容.用曲率刻畫空間彎曲性,規(guī)定:多面體頂點(diǎn)的曲率等于與多面體在該點(diǎn)的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點(diǎn)的曲率均為零,多面體的總曲率等于該多面體各頂點(diǎn)的曲率之和,例如:正四面體在每個(gè)頂點(diǎn)有3個(gè)面角,每個(gè)面角是,所以正四面體在各頂點(diǎn)的曲率為,故其總曲率為,則四棱錐的總曲率為()A. B. C. D.【答案】B【分析】根據(jù)題中給出的定義,由多面體的總曲率計(jì)算求解即可.【詳解】解:由題意,四棱錐的總曲率等于四棱錐各頂點(diǎn)的曲率之和,因?yàn)樗睦忮F有5個(gè)頂點(diǎn),5個(gè)面,其中4個(gè)三角形,1個(gè)四邊形,所以四棱錐的表面內(nèi)角和由4個(gè)三角形和1個(gè)四邊形組成,所以面角和為,故總曲率為.故選:B.5.如圖,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且,則三棱錐的體積為()A. B. C. D.不確定【答案】A【分析】根據(jù)題意可知平面,而,在線段上運(yùn)動(dòng),則平面,從而得出點(diǎn)到直線的距離不變,求出的面積,再根據(jù)線面垂直的判定定理可證出平面,得出點(diǎn)到平面的距離為,最后利用棱錐的體積公式求出三棱錐的體積.【詳解】解:由題可知,正方體的棱長(zhǎng)為1,則平面,又,在線段上運(yùn)動(dòng),平面,點(diǎn)到直線的距離不變,由正方體的性質(zhì)可知平面,則,而,,故的面積為,又由正方體可知,,,且,平面,則平面,設(shè)與交于點(diǎn),則平面,點(diǎn)到平面的距離為,.故選:A.6.如圖已知正方體,點(diǎn)是對(duì)角線上的一點(diǎn)且,,則()A.當(dāng)時(shí),平面 B.當(dāng)時(shí),平面C.當(dāng)為直角三角形時(shí), D.當(dāng)?shù)拿娣e最小時(shí),【答案】D【分析】建立空間直角坐標(biāo)系,利用空間向量法一一計(jì)算可得;【詳解】解:由題可知,如圖令正方體的棱長(zhǎng)為1,建立空間直角坐標(biāo)系,則,,,,,,,所以,因?yàn)?,所以,所以,,,,設(shè)平面的法向量為,則,令,則,,所以對(duì)于A:若平面,則,則,解得,故A錯(cuò)誤;對(duì)于B:若平面,則,即,解得,故B錯(cuò)誤;當(dāng)為直角三角形時(shí),有,即,解得或(舍去),故C錯(cuò)誤;設(shè)到的距離為,則,當(dāng)?shù)拿娣e最小時(shí),,故正確.故選:.7.如圖所示,已知空間四邊形的每條邊和對(duì)角線長(zhǎng)都等于a,點(diǎn)E、F、G分別為AB、AD、DC的中點(diǎn),則a2等于()A.2? B.2? C.2? D.2?【答案】B【分析】由條件利用兩個(gè)向量的數(shù)量積的定義,對(duì)各個(gè)選項(xiàng)中式子進(jìn)行運(yùn)算,可得結(jié)論.【詳解】由題意可得,22a?a?cos(π﹣∠BAD)=2a2?(﹣cos60°)=﹣a2,故排除A.∵2?2?a?a?cos60°=a2,故B滿足條件.∵2?2??a?cosπ=﹣a2,故排除C.∵2?2??a?cos60°,故排除D,故選:B8.如圖一,矩形中,,交對(duì)角線于點(diǎn),交于點(diǎn).現(xiàn)將沿翻折至的位置,如圖二,點(diǎn)為棱的中點(diǎn),則下列判斷一定成立的是()A. B.平面C.平面 D.平面平面【答案】D【分析】利用反證法可判斷A選項(xiàng);由二面角的變化可判斷B選項(xiàng);利用反證法結(jié)合面面平行的性質(zhì)可判斷C選項(xiàng);利用面面垂直的判定定理可判斷D選項(xiàng).【詳解】翻折前,,,翻折后,對(duì)應(yīng)地有,,,,則平面,平面,故平面平面,D選項(xiàng)一定成立;對(duì)于B選項(xiàng),由上可知,二面角的平面角為,在翻折的過程中,會(huì)發(fā)生變化,則與不一定垂直,即與平面不一定垂直,故B選項(xiàng)不一定成立;對(duì)于A選項(xiàng),設(shè),在圖一中,,所以,,可得,,因?yàn)?,則,故,所以,,在圖二中,過點(diǎn)在平面內(nèi)作交于點(diǎn),連接,則,故,則,又因?yàn)?,故不為的中點(diǎn),因?yàn)?,,則,若,且,則平面,平面,則,由于、平面,且,故,由于為的中點(diǎn),則為的中點(diǎn),與已知條件矛盾,A選項(xiàng)不成立;對(duì)于C選項(xiàng),由A選項(xiàng)可知,因?yàn)椋矫?,平面,所以,平面,若平面,,則平面平面,因?yàn)槠矫嫫矫?,平面平面,則,由于為的中點(diǎn),則為的中點(diǎn),與已知條件矛盾,C選項(xiàng)不成立.故選:D.9.點(diǎn)M是棱長(zhǎng)為3的正方體中棱的中點(diǎn),,動(dòng)點(diǎn)P在正方形(包括邊界)內(nèi)運(yùn)動(dòng),且平面,則的長(zhǎng)度范圍為()A. B. C. D.【答案】B【分析】以D為原點(diǎn),為x軸,為y軸,為z軸,建立空間直角坐標(biāo)系,設(shè)平面與于,取中點(diǎn)F,在上取點(diǎn)H,使,在上取點(diǎn)G,使,可得截面,【詳解】解:以D為原點(diǎn),為x軸,為y軸,為z軸,建立空間直角坐標(biāo)系,如圖,設(shè)平面與于,連接,由平面平面,是截面與這兩個(gè)平面的交線,因此,取中點(diǎn)F,在上取點(diǎn)H,使,在上取點(diǎn)G,使,連接,易得,所以,又,所以,所以,而平面,平面,所以平面,易知,,,,,∴,,,,,所以,共面,,,所以,同理得平面,是平面內(nèi)兩相交直線,則平面平面,∵動(dòng)點(diǎn)P在正方形(含邊界)內(nèi)運(yùn)動(dòng),且平面,∴P點(diǎn)的軌跡是線段,又點(diǎn)C到線段的距離,∴的長(zhǎng)度的最小值為,,,∴長(zhǎng)度的最大值為.∵的長(zhǎng)度范圍為.故選:B.10.如圖,在正方體中,點(diǎn)M在線段(不包含端點(diǎn))上運(yùn)動(dòng),則下列判斷中正確的是()①平面;②異面直線與所成角的取值范圍是;③平面恒成立;④三棱錐的體積不是定值.A.①③ B.①② C.①②③ D.②④【答案】B【分析】根據(jù)給定條件證得平面平面可判斷①;由及正可判斷②;取特殊位置說明與不垂直判斷③;利用等體積法轉(zhuǎn)化可判斷④即可作答.【詳解】在正方體中,連接,如圖,因?qū)敲鍭BC1D1是矩形,則AD1//BC1,而平面ACD1,平面ACD1,于是得BC1//平面ACD1,同理,A1B//平面ACD1,而,平面,因此,平面平面,又平面,故有平面,①正確;因,即異面直線與所成角即為與所成角,而是正三角形,點(diǎn)M在線段(不包含端點(diǎn))上運(yùn)動(dòng)時(shí),與所成角范圍為,②正確;當(dāng)M為的中點(diǎn)時(shí),直線過點(diǎn)C,,即此時(shí)與不垂直,平面不恒成立,③錯(cuò)誤;因BC1//平面ACD1,則,即三棱錐的體積是定值,④錯(cuò)誤.故選:B11.在四面體中,平面,,,,則該四面體的外接球的表面積是()A. B.100π C. D.20π【答案】D【分析】由題知,,,設(shè)為三角形的外心,進(jìn)而得,過作三角形的垂線,球心在上,且,進(jìn)而得外接球半徑,再計(jì)算表面積即可得答案.【詳解】如圖:因?yàn)槠矫?,,所以,,因?yàn)?,由余弦定理可解得,設(shè)為三角形的外心,則由正弦定理得三角形外接圓半徑為2,即,過作三角形的垂線,球心在上,則,可求外接球半徑,故該四面體的外接球的表面積是,故選:D.12.已知圓錐的母線長(zhǎng)為,側(cè)面展開圖的圓心角為,則該圓錐外接球的表面積為()A. B. C. D.【答案】C【分析】由圓錐側(cè)面展開圖的圓心角可構(gòu)造方程求得圓錐底面半徑,在中,利用勾股定理可構(gòu)造關(guān)于圓錐外接球半徑的方程,解方程求得,根據(jù)球的表面積公式即可求得結(jié)果.【詳解】設(shè)圓錐的底面半徑為,由題意得:,解得:.如圖,是圓錐的一條母線,由圓錐的性質(zhì)知其外接球的球心在上,連接,,設(shè)圓錐的外接球的半徑為,則,則,,即,解得:,圓錐的外接球的表面積為.故選:C.13.如圖,四棱錐的底面為矩形,底面,,,點(diǎn)是的中點(diǎn),過,,三點(diǎn)的平面與平面的交線為,則下列結(jié)論中正確的有()(1)平面;(2)平面;(3)直線與所成角的余弦值為;(4)平面截四棱錐所得的上、下兩部分幾何體的體積之比為.A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)【答案】C【分析】對(duì)A,取的中點(diǎn),連接,證明平面,即平面,可判斷A;對(duì)B,若平面,則,結(jié)合,可判斷B;對(duì)C,根據(jù),故判斷C;對(duì)D,連接,分別求出兩部分的體積即可判斷D.【詳解】對(duì)A,取的中點(diǎn),連接,則,即,,,四點(diǎn)共面,即為,因?yàn)?,平面,平面,所以平面,即平面,故A正確;對(duì)B:由,若平面.則必有,即四邊形為平行四邊形,則,因?yàn)椋?,所以矛盾,故B錯(cuò)誤;對(duì)C:與所成角,即與所成角,即與所成角,由底面得.則,故C正確;對(duì)D:連接,由A知截面就是平面,下半部分分為四棱錐和三棱錐.,,由底面得,又,,平面,所以平面,即平面.所以,即下半部分體積為.所以上半部分體積與下半部分體積之比為,故D正確.因此正確的結(jié)論有3個(gè).故選:C.14.在四棱錐中,平面平面,且是邊長(zhǎng)為2的正三角形,是正方形,則四棱錐外接球的表面積為()A. B. C. D.【答案】D【分析】連接AC交BD于F,球心O在底面的射影必為點(diǎn)F,取AD的中點(diǎn)E,在截面PEF中,利用勾股定理求出球的半徑,即可求四棱錐P-ABCD的外接球的體積.【詳解】連接AC交BD于F,球心O在底面的射影必為點(diǎn)F,取AD的中點(diǎn)E,在截面PEF中,連結(jié),如圖,在等邊中,AD的中點(diǎn)為E,所以,又平面平面,是交線,所以平面,且,設(shè),外接球半徑為R,則在正方形中,,在中,,而在截面中,,由可得:解得,所以,所以.故選:D15.已知在正四面體ABCD中,E是AD的中點(diǎn),P是棱AC上的一動(dòng)點(diǎn),BP+PE的最小值為,則該四面體內(nèi)切球的體積為()A.π B.πC.4π D.π【答案】D【分析】首先設(shè)正四面體的棱長(zhǎng)為,將側(cè)面和沿邊展開成平面圖形,根據(jù)題意得到的最小值為,從而得到,根據(jù)等體積轉(zhuǎn)化得到內(nèi)切球半徑,再計(jì)算其體積即可.【詳解】設(shè)正四面體的棱長(zhǎng)為,將側(cè)面和沿邊展開成平面圖形,如圖所示:則的最小值為,解得.如圖所示:為正四面體的高,,正四面體高.所以正四面體的體積.設(shè)正四面體內(nèi)切球的球心為,半徑為,如圖所示:則到正四面體四個(gè)面的距離相等,都等于,所以正四面體的體積,解得.所以內(nèi)切球的體積.故選:D16.在棱長(zhǎng)為2的正方體中,點(diǎn),,,分別為棱,,,的中點(diǎn),若平面平面,且平面與棱,,分別交于點(diǎn),,,其中點(diǎn)是棱的中點(diǎn),則三棱錐的體積為()A.1 B. C. D.【答案】D【分析】根據(jù)已知條件結(jié)合面面平行的性質(zhì)定理可確定出,根據(jù)點(diǎn)的位置可確定出的位置,由此可計(jì)算出三棱錐的體積.【詳解】如圖所示,取的中點(diǎn),連接,由正方體結(jié)構(gòu)特點(diǎn)可知:,所以六點(diǎn)共面,又因?yàn)槠矫嫫矫?,所以平面平面,又平面平面,平面平面,所以,由為所在邊中點(diǎn)可知為中點(diǎn),同理可知:為的中點(diǎn),所以,且,,兩兩垂直,所以三棱錐的體積為,故選:D.17.已知球,過其球面上,,三點(diǎn)作截面,若點(diǎn)到該截面的距離是球半徑的一半,且,,則球的表面積為()(注:球的表面積公式A. B. C. D.【答案】A【分析】根據(jù)條件先計(jì)算出外接圓的半徑,然后根據(jù)球的半徑、球心到截面的距離、外接圓的半徑構(gòu)成直角三角形的三邊,由此列出方程可求外接球的半徑,則球的表面積可求.【詳解】如圖,設(shè)球的半徑為,是的外心,外接圓的半徑為,則平面,在中,,,則,由正弦定理可得,即,在中,有,得.球的表面積為.故選:A.18.如圖,在正三棱柱ABC-A1B1C1中,AC=CC1,P是A1C1的中點(diǎn),則異面直線BC與AP所成角的余弦值為()A.0 B. C. D.【答案】D【分析】取的中點(diǎn)Q,連接.先證明即異面直線與所成的角或其補(bǔ)角.在三角形APQ中,由余弦定理求出異面直線BC與AP所成角的余弦值.【詳解】如圖,取的中點(diǎn)Q,連接.因?yàn)?,所以即異面直線與所成的角或其補(bǔ)角.在正三棱柱ABC-A1B1C1中,設(shè),則,在三角形APQ中,由余弦定理得:.故選:D19.一個(gè)四棱錐和一個(gè)三棱錐恰好可以拼接成一個(gè)三棱柱,這個(gè)四棱錐的底面為正方形,且底面邊長(zhǎng)與各側(cè)棱長(zhǎng)相等,這個(gè)三棱錐的底面邊長(zhǎng)與各側(cè)棱長(zhǎng)也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為、、,則()A. B. C. D.【答案】C【分析】由題設(shè)易知,設(shè)利用正方形、正三角形的性質(zhì)及勾股定理求出、、,即可知它們的比例關(guān)系.【詳解】設(shè)四棱錐為,三棱錐為,則三棱錐為正四面體,四棱錐為正四棱錐,顯然.設(shè),正方形的中心為,正三角形的中心為,連接,,,,則,,,,即,,.故選:C20.如圖,二面角的大小是,線段.,與所成的角為.直線與平面所成的角的正弦值是()A. B. C. D.【答案】A【分析】過點(diǎn)作平面的垂線,垂足為,在內(nèi)過作的垂線.垂足為連接,由三垂線定理可知,故為二面角的平面角為,在即可得到答案;【詳解】解:過點(diǎn)作平面的垂線,垂足為,在內(nèi)過作的垂線.垂足為連接,由三垂線定理可知,故為二面角的平面角為又由已知,連接,則為與平面所成的角,設(shè),則,,直線與平面所成的角的正弦值.故選:.二、多選題21.如圖,已知正方體,則四個(gè)推斷正確的是()A. B.C.平面平面 D.平面平面【答案】BCD【分析】對(duì)于A,與成角;對(duì)于B,由,,得;對(duì)于C,由,,得平面平面;對(duì)于D,由,,得平面平面.【詳解】在正方體中,對(duì)于A,由正方體的性質(zhì)可知,所以即為異面直線與所成的角,在中顯然,所以與成角,故A錯(cuò)誤;對(duì)于B,,,,故B正確;對(duì)于C,,,、平面,、平面,∴平面,平面,又,平面平面,故C正確;對(duì)于D,,,,平面,所以平面,又平面平面平面,故D正確.故選:BCD.22.正方體的棱長(zhǎng)為2,E,F(xiàn),G分別為的中點(diǎn),則()A.直線與直線垂直 B.直線與平面平行C.平面截正方體所得的截面面積為 D.點(diǎn)C到平面的距離為【答案】BCD【分析】A.設(shè),易證平面AEF判斷;B.取的中點(diǎn),連接,證明平面平面AEF判斷;C.接,易證,得到截面為等腰梯形求解判斷;D.利用等體積法,由求解判斷.【詳解】A.若,因?yàn)槠矫鍭BCD,則,又,所以平面AEF,則,則,故錯(cuò)誤;B.如圖所示:取的中點(diǎn),連接,易知,又平面AEF,平面AEF,所以平面AEF,同理平面AEF,又,所以平面平面AEF,因?yàn)槠矫?,所以平面AEF,故正確;C.如圖所示:連接,因?yàn)镋,F(xiàn)分別為的中點(diǎn),則,所以共面,則截面為等腰梯形,又,等腰梯形的高為,所以等腰梯形的面積為,故正確;D.因?yàn)?,且,所以點(diǎn)C到平面的距離為,故正確.故選:BCD23.正四棱錐的所有棱長(zhǎng)為2,用垂直于側(cè)棱的平面截該四棱錐,則()A.截面可以是三角形B.與底面所成的角為C.與底面所成的角為D.當(dāng)平面經(jīng)過側(cè)棱中點(diǎn)時(shí),截面分四棱錐得到的上下兩部分幾何體體積之比為3:1【答案】ACD【分析】對(duì)于A:取PC的中點(diǎn)E,連結(jié)BE、DE、BD.可以證明面BDE,即可判斷A;對(duì)于B、C:作為與底面所成的角.即可求得;對(duì)于D:分別求出上下兩部分幾何體的體積,即可判斷.【詳解】對(duì)于A:取PC的中點(diǎn)E,連結(jié)BE、DE、BD.因?yàn)檎睦忮F的所有棱長(zhǎng)為2,所以△PBC、△PBC為正三角形,所以又,則面BDE,即△BDE為截面.故A正確;對(duì)于B、C:過P作底面ABCD于O,則O為AC中點(diǎn).則即為與底面所成的角.因?yàn)檎睦忮F的所有棱長(zhǎng)為2,所以,所以,所以.故B錯(cuò)誤,C正確;對(duì)于D:由A的推導(dǎo)過程可知:平面經(jīng)過側(cè)棱中點(diǎn)時(shí),平面即為平面BDE.此時(shí).因?yàn)?所以,所以.故D正確故選:ACD24.如圖,等腰直角三角形的斜邊為正四面體的側(cè)棱,,直角邊繞斜邊旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,下列說法正確的是()A.三棱錐體積的最大值為B.三棱錐體積的最小值為C.存在某個(gè)位置,使得D.設(shè)二面角的平面角為,且,則【答案】AC【分析】是的中點(diǎn)﹐點(diǎn)在以為圓心,為半徑的圓上運(yùn)動(dòng)(圓錐的底面圓),作出圖形,觀察到平面距離的最大值和最小值,計(jì)算體積判斷AB,把去掉,作出圖形,分析與所成角,二面角的大小判斷CD.【詳解】在圖1中,是的中點(diǎn),是的中點(diǎn)﹐點(diǎn)在以為圓心,為半徑的圓上運(yùn)動(dòng),易知當(dāng)三點(diǎn)共線,且在之間時(shí),三棱錐的體積最大,當(dāng)運(yùn)動(dòng)到的位置時(shí),的體積最小.在中,.設(shè)到平面的距離分別為,則,所以三棱錐體積的最大值為,最小值為,A正確,B錯(cuò)誤.如圖2,因?yàn)橹本€與旋轉(zhuǎn)軸所成的角為,母線與旋轉(zhuǎn)軸所成的角為﹐所以直線與所成角的范圍為,即,因?yàn)?,所以存在夾角為的情況,又因?yàn)榫€線角的取值范圍不包含鈍角,所以直線與所成角的范圍為,即可得出C正確.如圖2,當(dāng)運(yùn)動(dòng)到時(shí),二面角的平面角為,在與中,所以,所以,所以,即,D錯(cuò)誤.故選:AC25.如圖,在平行六面體中,以頂點(diǎn)A為端點(diǎn)的三條棱長(zhǎng)均為6,且它們彼此的夾角都是60°,下列說法中不正確的是()A.B.平面C.向量與的夾角是60°D.直線與AC所成角的余弦值為【答案】AC【分析】根據(jù)題意,利用空間向量的線性運(yùn)算和數(shù)量積運(yùn)算,對(duì)選項(xiàng)中的命題分析,判斷正誤即可.【詳解】解:對(duì)于,,所以,選項(xiàng)錯(cuò)誤;對(duì)于,所以,即,,所以,即,因?yàn)?,平面,所以平面,選項(xiàng)正確;對(duì)于:向量與的夾角是,所以向量與的夾角也是,選項(xiàng)錯(cuò)誤;對(duì)于,所以,,同理,可得,所以,所以選項(xiàng)正確.故選:AC.26.正方體中,是棱的中點(diǎn),在側(cè)面上運(yùn)動(dòng),且滿足平面.以下命題正確的有()A.側(cè)面上存在點(diǎn),使得B.直線與直線所成角可能為C.平面與平面所成銳二面角的正切值為D.設(shè)正方體棱長(zhǎng)為1,則過點(diǎn),,的平面截正方體所得的截面面積最大為【答案】ACD【分析】由面面平行的性質(zhì)可得出點(diǎn)的軌跡,再找出點(diǎn),使得可判斷A;由異面直線所成的角的定義求出角的范圍可判斷B;計(jì)算二面角的平面角可判斷C;求出最大截面的面積可判斷D,進(jìn)而可得正確選項(xiàng).【詳解】對(duì)于A:取和的中點(diǎn)分別為,,連接,,,則,,,,所以面面,因?yàn)樵趥?cè)面上運(yùn)動(dòng),且滿足平面,所以點(diǎn)在線段上,因?yàn)槭钦襟w,所以,若為線段的中點(diǎn),可得,因?yàn)?,所以,故選項(xiàng)A正確;對(duì)于B:因?yàn)椋耘c直線所成角即為與直線所成角,則即為異面直線所成的角,設(shè)正方體的棱長(zhǎng)為,在中,,若所成的角為,則,而最大為,所以,所以所成角不可能為,故選項(xiàng)B不正確;對(duì)于C:因?yàn)槊婷?,所以平面與平面所銳二面角,即為平面與平面所成銳二面角,因?yàn)槊婷?,,,?dāng)為線段的中點(diǎn),可得,,所以即為二面角的平面角,且,,所以,故選項(xiàng)C正確;對(duì)于D:當(dāng)為與的交點(diǎn)時(shí)過點(diǎn),,的平面截正方體所得的截面面積最大,取的中點(diǎn),,,則截面為菱形,,,其面積為故選項(xiàng)D正確,故選:ACD.27.如圖,邊長(zhǎng)為1的正方形ABCD所在平面與正方形ABEF所在平面互相垂直,動(dòng)點(diǎn)M,N分別在正方形對(duì)角線AC和BF上移動(dòng),且.則下列結(jié)論中正確的有()A.當(dāng)時(shí),ME與CN相交B.MN始終與平面BCE平行C.異面直線AC與BF所成的角為D.當(dāng)時(shí),MN的長(zhǎng)最小,最小為【答案】BD【分析】以B為原點(diǎn),BA,BE,BC所在直線分別為軸,軸,軸,建立空間直角坐標(biāo)系.證明向量不共面可判斷選項(xiàng)A錯(cuò)誤;判斷與平面BCE的法向量垂直可判斷選項(xiàng)B;利用向量法可求異面直線所成的角,從而判斷選項(xiàng)C;利用兩點(diǎn)間的距離公式及二次函數(shù)的性質(zhì)可判斷選項(xiàng)D.【詳解】以B為原點(diǎn),BA,BE,BC所在直線分別為軸,軸,軸,建立空間直角坐標(biāo)系,則,因?yàn)?,所以,?dāng)時(shí),,,若ME與CN相交,則四點(diǎn)共面,設(shè),則,該方程無解,所以ME與CN不相交,故選項(xiàng)A錯(cuò)誤;平面BCE的法向量為,此時(shí),所以MN始終與平面BCE平行,故B正確;,設(shè)異面直線AC與BF所成的角為,所以,所以異面直線AC與BF所成的角為60°,故C錯(cuò)誤;,所以當(dāng)時(shí),MN的長(zhǎng)最小,最小為,故D正確.故選:BD.28.(多選)如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論正確的是()A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.異面直線AD與CB1所成的角為60°【答案】ABC【分析】由的射影、、,結(jié)合線面垂直的判定即可知B、C的正誤;構(gòu)建空間直角坐標(biāo)系,利用空間向量數(shù)量積的坐標(biāo)運(yùn)算可得,結(jié)合C選項(xiàng)即可判斷A的正誤,再利用線線角的向量求法求AD與CB1所成角.【詳解】以D為坐標(biāo)原點(diǎn),分別以所在方向?yàn)閤,y,z軸的正半軸,建立空間直角坐標(biāo)系,由在面、面、面的射影、、,即,,,又,則AC1⊥面CB1D1,∴B、C正確;設(shè)正方體棱長(zhǎng)為1,易知=(-1,-1,0),=(-1,1,1),∴,即BD∥面CB1D1,故A正確;∵=(-1,0,0),=(1,0,1),∴,∴AD與CB1所成的角為45°,故D錯(cuò),故選:ABC.29.已知四邊形ABCD為正方形,GD⊥平面ABCD,四邊形DGEA與四邊形DGFC也都為正方形,連接EF,F(xiàn)B,BE,H為BF的中點(diǎn),則下列結(jié)論正確的是()A.DE⊥BFB.EF與CH所成角為C.EC⊥平面DBFD.BF與平面ACFE所成角為【答案】ABC【分析】根據(jù)題意,將幾何體補(bǔ)形為正方體,進(jìn)而建立空間直角坐標(biāo)系,通過空間向量的運(yùn)算得到答案.【詳解】由題意得,所得幾何體可以補(bǔ)形成一個(gè)正方體,如圖所示.以D為坐標(biāo)原點(diǎn),DA,DC,DG所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系.設(shè)AD=DC=DG=2,則D(0,0,0),C(0,2,0),E(2,0,2),F(xiàn)(0,2,2),B(2,2,0),H(1,2,1).對(duì)A,,所以,則,正確;對(duì)B,,設(shè)所成角為,所以,正確;對(duì)C,,設(shè)是平面DBF的一個(gè)法向量,所以,令x=1,則,所以,則EC⊥平面DBF,正確;對(duì)D,由題意,EA⊥平面ABCD,則EA⊥DB,易得:DB⊥AC,EA與AC交于A,則DB⊥平面ACFE,則是平面ACFE的一個(gè)法向量,設(shè)BF與平面ACFE所成的角為,所以,錯(cuò)誤.故選:ABC.30.下圖中正方體邊長(zhǎng)為2,則下列說法正確的是()A.平面平面B.正方體外接球與正四面體外接球半徑相等均為C.正四面體內(nèi)切球半徑為D.四面體內(nèi)切球半徑為【答案】BCD【分析】取的中點(diǎn),連接和,計(jì)算二面角的平面角即可判斷A;由正四面體與正方體有同一個(gè)外接球可判斷B,利用等體積求內(nèi)切球的半徑可判斷CD,進(jìn)而可得正確選項(xiàng).【詳解】對(duì)于A:因?yàn)檎襟w的邊長(zhǎng)為,所以,所以和是等邊三角形,取的中點(diǎn),連接和,則,,所以即為二面角的平面角,因?yàn)?,,因?yàn)椋圆坏扔?,即二面角的平面角不等于,所以平面平面不成立,故選項(xiàng)A不正確;對(duì)于B:正四面體的四個(gè)頂點(diǎn)都是正方體的頂點(diǎn),所以正四面體與正方體有同一個(gè)外接球,且外接球的半徑為,故選項(xiàng)B正確;對(duì)于C:正四面體內(nèi)切球半徑為,正四面體的高為,由體積相等可得:,可得,故選項(xiàng)C正確;對(duì)于D:設(shè)四面體內(nèi)切球半徑為,由體積相等可得:,即,解得:,故選項(xiàng)D正確;故選:BCD.第II卷(非選擇題)三、填空題31.空間四面體中,,,,直線和所成的角為,則該四面體的外接球的表面積為__.【答案】/11.5π【分析】將該四面體的六條棱看成某長(zhǎng)方體的六個(gè)面的對(duì)角線,然后該長(zhǎng)方體的外接球即為該四面體的外接球,最后求出外接球的表面積【詳解】如圖所示,因?yàn)?,,,先將四面體的六條棱看成該長(zhǎng)方體如圖所示的六條面對(duì)角線,下面驗(yàn)證直線和所成的角為,易知,,且,互相平分于點(diǎn),所以,設(shè)長(zhǎng)方體的三邊長(zhǎng)為,,,則,解得,故是等邊三角形,則,即直線和所成的角為,即成立,故四面體的六條棱看成該長(zhǎng)方體如圖所示的六條面對(duì)角線,四面體的外接球即為該長(zhǎng)方體的外接球,所以外接球的直徑,故外接球的表面積為.故答案為:.32.如圖,A、B、C、D、P是球O上5個(gè)點(diǎn),ABCD為正方形,球心O在平面ABCD內(nèi),,,則PA與CD所成角的余弦值為______.【答案】【分析】由題可得∠PAB即為所求,設(shè)球O的半徑為r,則可得,,在等腰三角形PAB中,即得.【詳解】∵ABCD為正方形,∴AB∥CD,∴∠PAB即為異面直線PA與CD所成角,設(shè)球O的半徑為r,球心O在平面ABCD內(nèi),則O為正方形ABCD的中心,由題可知,又,∴,又,∴,在等腰三角形PAB中,.故答案為:.33.已知圓錐、圓柱的底面半徑和體積都相等,則它們的軸截面的面積之比的比值是___________【答案】【分析】利用公式分別求出圓錐和圓柱的體積以及他們的軸截面面積,然后結(jié)合已知條件求出圓錐與圓柱的高的比值,進(jìn)而求出它們的軸截面的面積之比的比值.【詳解】由題意,設(shè)圓錐、圓柱的底面半徑為,高分別為、,體積分別為、,軸截面面積為、,從而,,,,因?yàn)閳A錐、圓柱的體積相等,所以,即,故,從而圓錐、圓柱的軸截面的面積之比的比值是.故答案為:.34.中國(guó)有悠久的金石文化,印信是金石文化的代表之一.下左圖是南北朝官員獨(dú)孤信的印信,它是由正方形和正三角形圍成.右圖是根據(jù)這只印信作出的直觀圖,直觀圖的所有頂點(diǎn)都在一正方體的表面上(如果一個(gè)正八邊形的八個(gè)頂點(diǎn)都在這個(gè)正方體同一個(gè)側(cè)面的四條棱上,那么這個(gè)八邊形的邊長(zhǎng)就等于這個(gè)直觀圖的棱長(zhǎng)).若這個(gè)正方體的所有頂點(diǎn)都在半徑為的球面上,則這只印信的表面積為__________.【答案】/【分析】根據(jù)正方體外接球的半徑可確定其棱長(zhǎng)為;根據(jù)正八邊形的八個(gè)頂點(diǎn)都在這個(gè)正方體同一個(gè)側(cè)面的四條棱上可構(gòu)造方程求得正八邊形的邊長(zhǎng),即為直觀圖的棱長(zhǎng),進(jìn)而根據(jù)直觀圖的構(gòu)成可求得表面積.【詳解】設(shè)正方體棱長(zhǎng)為,正方體的所有頂點(diǎn)都在半徑為的球面上,,解得:;設(shè)正八邊形的邊長(zhǎng)為,則,整理可得:,解得:,即直觀圖棱長(zhǎng)為;由直觀圖可知:印信是由個(gè)正方形,個(gè)等邊三角形拼接而成,印信的表面積.故答案為:.35.如圖,在直三棱柱中,,,已知G與E分別為和的中點(diǎn),D和F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若,則線段DF的長(zhǎng)度的平方取值范圍為__________.【答案】.【分析】建立空間直角坐標(biāo)系,根據(jù)題設(shè)條件可得,再表示出,利用二次函數(shù)的性質(zhì)即可求得答案.【詳解】解:建立如圖所示的空間直角坐標(biāo)系,則,,,,∴,,∵,∴,∴,又,∴,∴當(dāng)時(shí),有最小值,即為,顯然線段DF長(zhǎng)度的最大值是1,但不包括端點(diǎn),故不能取1,綜上,線段DF長(zhǎng)度的平方取值范圍為.故答案為:.36.如圖,在長(zhǎng)方體中,已知,點(diǎn),分別在棱,上.二面角的大小為30°.若三棱錐的體積為,則三棱錐的外接球的表面積為___________.【答案】【分析】由題條件可求,再利用長(zhǎng)方體的性質(zhì)可得三棱錐的外接球的半徑,即求.【詳解】如圖過D作DE⊥MN于E,連D1E,則,由長(zhǎng)方體的性質(zhì)可知,DD1⊥平面ABCD,∴DD1⊥MN,DD1∩DE=D,∴MN⊥平面DED1∴∠D1ED為二面角的平面角,∴∠D1ED,又,∴,又三棱錐的體積為,∴,∴,∴,設(shè)三棱錐的外接球的半徑為R,則,∴三棱錐的外接球的表面積為.故答案為:37.異面直線a、b所成角為,直線c與a、b垂直且分別交于A、B,點(diǎn)C、D分別在直線a、b上,若,,,則________.【答案】或【分析】過B作BE//AC且過D作DE⊥BE于E,連接BE、CE,要注意E、C在AB的同側(cè)或異側(cè)兩種情況,結(jié)合已知有,再過C作CF⊥BE于F,求出DE、EC的長(zhǎng)度,在Rt△DEC中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度插班生入校學(xué)業(yè)輔導(dǎo)協(xié)議范本4篇
- 2025版城市綠化用地租賃管理協(xié)議書3篇
- 二零二五年度個(gè)人信息保護(hù)協(xié)議范本守護(hù)用戶隱私安全2篇
- 2025農(nóng)業(yè)土地承包合同
- 2025年度IT咨詢服務(wù)合同4篇
- 二零二五年度公立學(xué)校食堂運(yùn)營(yíng)管理合同4篇
- 2025年儲(chǔ)煤場(chǎng)租賃及煤炭倉(cāng)儲(chǔ)安全風(fēng)險(xiǎn)評(píng)估協(xié)議4篇
- 二零二五年度瓷磚定制加工服務(wù)合同3篇
- 二零二五年度陶瓷制品表面打磨質(zhì)量保障協(xié)議3篇
- 二零二四年實(shí)習(xí)生實(shí)習(xí)期間保密協(xié)議及知識(shí)產(chǎn)權(quán)歸屬合同3篇
- 無人化農(nóng)場(chǎng)項(xiàng)目可行性研究報(bào)告
- 《如何存款最合算》課件
- 社區(qū)團(tuán)支部工作計(jì)劃
- 拖欠工程款上訪信范文
- 2024屆上海市金山區(qū)高三下學(xué)期二模英語試題(原卷版)
- 學(xué)生春節(jié)安全教育
- 《wifi協(xié)議文庫》課件
- 《好東西》:女作者電影的話語建構(gòu)與烏托邦想象
- 教培行業(yè)研究系列(七):出國(guó)考培的再研究供需變化的新趨勢(shì)
- GB/T 44895-2024市場(chǎng)和社會(huì)調(diào)查調(diào)查問卷編制指南
- 高三日語一輪復(fù)習(xí)助詞「で」的用法課件
評(píng)論
0/150
提交評(píng)論