![吉林省長春市一五0中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁](http://file4.renrendoc.com/view14/M03/04/0A/wKhkGWcWn3-ACD03AAHwbhHl9Zw028.jpg)
![吉林省長春市一五0中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁](http://file4.renrendoc.com/view14/M03/04/0A/wKhkGWcWn3-ACD03AAHwbhHl9Zw0282.jpg)
![吉林省長春市一五0中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁](http://file4.renrendoc.com/view14/M03/04/0A/wKhkGWcWn3-ACD03AAHwbhHl9Zw0283.jpg)
![吉林省長春市一五0中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁](http://file4.renrendoc.com/view14/M03/04/0A/wKhkGWcWn3-ACD03AAHwbhHl9Zw0284.jpg)
![吉林省長春市一五0中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁](http://file4.renrendoc.com/view14/M03/04/0A/wKhkGWcWn3-ACD03AAHwbhHl9Zw0285.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市一五0中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,準(zhǔn)線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3C. D.22.已知向量與向量垂直,則實數(shù)x的值為()A.﹣1 B.1C.﹣6 D.63.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點 D.2為函數(shù)的極大值點4.在空間直角坐標(biāo)系中,已知點,,則線段的中點坐標(biāo)與向量的模長分別是()A.;5 B.;C.; D.;5.在平面上給定相異兩點,設(shè)點在同一平面上且滿足,當(dāng)且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.6.在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個直角三角形的斜邊長等于則這個直角三角形周長的最大值為()A. B.C. D.7.已知函數(shù),則等于()A.0 B.2C. D.8.已知正方形ABCD的邊長為2,E,F(xiàn)分別為CD,CB的中點,分別沿AE,AF將三角形ADE,ABF折起,使得點B,D恰好重合,記為點P,則AC與平面PCE所成角等于()A. B.C. D.9.已知橢圓的左、右焦點分別是,焦距,過點的直線與橢圓交于兩點,若,且,則橢圓C的方程為()A. B.C. D.10.函數(shù)為的導(dǎo)函數(shù),令,則下列關(guān)系正確的是()A. B.C. D.11.已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,過點F1作直線l交橢圓C于M,N兩點,則的周長為()A.3 B.4C.6 D.812.內(nèi)角、、的對邊分別為、、,若,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足不等式組,則目標(biāo)函數(shù)的最大值為__________.14.經(jīng)過兩點的雙曲線的標(biāo)準(zhǔn)方程是________15.方程的曲線的一條對稱軸是_______,的取值范圍是______.16.若=,則x的值為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線方程為(1)若直線的傾斜角為,求的值;(2)若直線分別與軸、軸的負(fù)半軸交于、兩點,為坐標(biāo)原點,求面積的最小值及此時直線的方程18.(12分)某公園有一形狀可抽象為圓柱的標(biāo)志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走向的觀景直道,建筑物的東西兩側(cè)有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心O的東北方向米的點A處,有一全景攝像頭,其安裝高度低于建筑物的高度(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監(jiān)控范圍內(nèi)?(2)求觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度19.(12分)已知橢圓的左頂點、上頂點和右焦點分別為,且的面積為,橢圓上的動點到的最小距離是(1)求橢圓的方程;(2)過橢圓的左頂點作兩條互相垂直的直線交橢圓于不同的兩點(異于點).①證明:動直線恒過軸上一定點;②設(shè)線段中點為,坐標(biāo)原點為,求的面積的最大值.20.(12分)為增強市民的環(huán)境保護意識,某市面向全市征召若干名宣傳志愿者,成立環(huán)境保護宣傳小組,現(xiàn)把該小組的成員按年齡分成、、、、這組,得到的頻率分布直方圖如圖所示,已知年齡在內(nèi)的人數(shù)為.(1)若用分層抽樣的方法從年齡在、、內(nèi)的志愿者中抽取名參加某社區(qū)的宣傳活動,再從這名志愿者中隨機抽取名志愿者做環(huán)境保護知識宣講,求這名環(huán)境保護知識宣講志愿者中至少有名年齡在內(nèi)的概率;(2)在(1)的條件下,記抽取的名志愿者分別為甲、乙,該社區(qū)為了感謝甲、乙作為環(huán)境保護知識宣講的志愿者,給甲、乙各隨機派發(fā)價值元、元、元的紀(jì)念品一件,求甲的紀(jì)念品不比乙的紀(jì)念品價值高的概率.21.(12分)如圖,菱形的邊長為4,,矩形的面積為8,且平面平面(1)證明:;(2)求C到平面的距離.22.(10分)已知函數(shù)(Ⅰ)若的圖象在點處的切線與軸負(fù)半軸有公共點,求的取值范圍;(Ⅱ)當(dāng)時,求的最值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.2、B【解析】根據(jù)數(shù)量積的坐標(biāo)計算公式代入可得的值【詳解】解:向量,與向量垂直,則,由數(shù)量積的坐標(biāo)公式可得:,解得,故選:【點睛】本題考查空間向量的坐標(biāo)運算,以及數(shù)量積的坐標(biāo)公式,屬于基礎(chǔ)題3、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點,故C不正確,D正確.故選:D4、B【解析】根據(jù)給定條件利用中點坐標(biāo)公式及空間向量模長的坐標(biāo)表示計算作答.【詳解】因點,,所以線段的中點坐標(biāo)為,.故選:B5、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點時的面積最大,所以,解得;當(dāng)位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.6、C【解析】設(shè)直角三角形的兩條直角邊邊長分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長分別為,則.因為,所以,所以,當(dāng)且僅當(dāng)時,等號成立.故這個直角三角形周長的最大值為故選:C7、D【解析】先通過誘導(dǎo)公式將函數(shù)化簡,進而求出導(dǎo)函數(shù),然后算出答案.【詳解】由題意,,故選:D.8、A【解析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,利用空間向量求解【詳解】由題意得,因為正方形ABCD的邊長為2,E,F(xiàn)分別為CD,CB的中點,所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,則,,,,設(shè),則由,,,得,解得,則設(shè)平面的法向量為,則,令,則,因為,所以AC與平面PCE所成角的正弦值,因為AC與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A9、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點,得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點,可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.10、B【解析】求導(dǎo)后,令,可求得,再利用導(dǎo)數(shù)可得為減函數(shù),比較的大小后,根據(jù)為減函數(shù)可得答案.【詳解】由題意得,,,解得,所以所以,所以為減函數(shù)因為,所以,故選:B【點睛】關(guān)鍵點點睛:比較大小的關(guān)鍵是知道的單調(diào)性,利用導(dǎo)數(shù)可得的單調(diào)性.11、D【解析】由的周長為,結(jié)合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據(jù)橢圓的定義,可得的周長為故選:D.12、C【解析】利用正弦定理可求得邊的長.【詳解】由正弦定理得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】畫出可行域,通過平移基準(zhǔn)直線到可行域邊界來求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,當(dāng)時,取得最大值.故答案為:14、【解析】設(shè)雙曲線的標(biāo)準(zhǔn)方程將點坐標(biāo)代入求參數(shù),即可確定標(biāo)準(zhǔn)方程.【詳解】令,則,可得,令,則,無解.故雙曲線的標(biāo)準(zhǔn)方程是.故答案為:.15、①.x軸或直線②.【解析】根據(jù)給定條件分析方程的性質(zhì)即可求得對稱軸及x的取值范圍作答.【詳解】方程中,因,則曲線關(guān)于x軸對稱,又,解得,此時曲線與都關(guān)于直線對稱,曲線的對稱軸是x軸或直線,的取值范圍是.故答案為:x軸或直線;16、4或9.【解析】分析:先根據(jù)組合數(shù)性質(zhì)得,解方程得結(jié)果詳解:因為=,所以因此點睛:組合數(shù)性質(zhì):三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)面積的最小值為,此時直線的方程為.【解析】(1)由直線的斜率和傾斜角的關(guān)系可求得的值;(2)求出點、的坐標(biāo),根據(jù)已知條件求出的取值范圍,求出的面積關(guān)于的表達(dá)式,利用基本不等式可求得面積的最小值,利用等號成立的條件可求得的值,即可得出直線的方程.【小問1詳解】解:由題意可得.【小問2詳解】解:在直線的方程中,令可得,即點,令可得,即點,由已知可得,解得,所以,,當(dāng)且僅當(dāng)時,等號成立,此時直線的方程為,即.18、(1)不在(2)17.5米【解析】(1)以O(shè)為原點,正東方向為x軸正方向建立如圖所示的直角坐標(biāo)系,求出直線AB方程,判斷直線AB與圓O的位置關(guān)系即可;(2)攝像頭監(jiān)控不會被建筑物遮擋,只需求出過點A的直線l與圓O相切時的直線方程即可.【小問1詳解】以O(shè)為原點,正東方向為x軸正方向建立如圖所示的直角坐標(biāo)系則,觀景直道所在直線的方程為依題意得:游客所在點為則直線AB的方程為,化簡得,所以圓心O到直線AB的距離,故直線AB與圓O相交,所以游客不在該攝像頭監(jiān)控范圍內(nèi).【小問2詳解】由圖易知:過點A的直線l與圓O相切或相離時,攝像頭監(jiān)控不會被建筑物遮擋,所以設(shè)直線l過A且恰與圓O相切,①若直線l垂直于x軸,則l不可能與圓O相切;②若直線l不垂直于x軸,設(shè),整理得所以圓心O到直線l的距離為,解得或,所以直線l的方程為或,即或,設(shè)這兩條直線與交于D,E由,解得,由,解得,所以,觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度為17.5米.19、(1)(2)①證明見解析;②【解析】(1)根據(jù)題意得,,解方程即可;(2)①設(shè)直線:,直線:,聯(lián)立曲線分別求出點和的坐標(biāo),求直線方程判斷定點即可;②根據(jù)題意得,代入求最值即可.【小問1詳解】根據(jù)題意得,,,又,三個式子聯(lián)立解得,,,所以橢圓的方程為:【小問2詳解】①證明:設(shè)兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因為,所以設(shè)直線:,直線:;由,解得,所以,同理,.當(dāng)時,,所以直線的方程為:,整理得,此時直線過定點;當(dāng)時,直線的方程為:,此時直線過定點,故直線恒過定點.②根據(jù)題意得,,,,所以,當(dāng)且僅當(dāng),即時等號成立,故的面積的最大值為:.【點睛】解決直線與橢圓綜合問題時,要注意:(1)注意觀察應(yīng)用題設(shè)中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關(guān)直線與橢圓聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關(guān)系、弦長、斜率、三角形的面積等問題20、(1);(2).【解析】(1)將名志愿者進行編號,列舉出所有的基本事件,并確定所求事件所包含的基本事件數(shù),利用古典概型的概率公式可求得所求事件的概率;(2)列舉出甲、乙獲得紀(jì)念品價值的所有情況,并確定所求事件所包含的情況,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:因為志愿者年齡在、、內(nèi)的頻率分別為、、,所以用分層抽樣的方法抽取的名志愿者年齡在、、內(nèi)的人數(shù)分別為、、.記年齡在內(nèi)的名志愿者分別記為、、,年齡在的名志愿者分別記為、,年齡在內(nèi)的名志愿者記為,則從中抽取名志愿者的情況有、、、、、、、、、、、、、、,共種可能;而至少有名志愿者的年齡在內(nèi)的情況有、、、、、、、、,共種可能.所以至少有名志愿者的年齡在內(nèi)的概率為.【小問2詳解】解:甲、乙獲得紀(jì)念品價值的情況有、、、、、、、、,共種可能;而甲的紀(jì)念品不比乙的紀(jì)念品價值高的情況有、、、、、,共種可能.故甲的紀(jì)念品不比乙的紀(jì)念品價值高的概率為.21、(1)證明見解析.(2)【解析】(1)利用線面垂直的性質(zhì)證明出;(2)利用等體積轉(zhuǎn)換法,先求出O到平面AEF的距離,再求C到平面的距離.【小問1詳解】在矩形中,.因為平面平面,平面平面,所以平面,所以.【小問2詳解】設(shè)AC與BD的交點為O,則C到平面AEF的距離為O到平面AEF的距離的2倍.因為菱形ABCD的邊長為4且,所以.因為矩形BDFE的面積為8,所以BE=2.,,則三棱錐的體積.在△AEF中,,所以.記O到平面AEF的距離為d.由得:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國單擺銑頭行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球倒置行星滾柱絲杠行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國汽車天線定位器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球直線式桁架機器人行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球裝運前檢驗(PSI)服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球1,1,1,3,3,3-六氟丙烷行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國全自動機器人裝箱機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 四川省樂山市高中高三上學(xué)期第一次調(diào)研考試語文試卷(含答案)
- 2025土石方開挖工程勞務(wù)分包合同
- 2025委托合同之義務(wù)責(zé)任
- 江西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期1月期末英語試題(含解析無聽力音頻有聽力原文)
- GA/T 2145-2024法庭科學(xué)涉火案件物證檢驗實驗室建設(shè)技術(shù)規(guī)范
- 2024年度窯爐施工協(xié)議詳例細(xì)則版B版
- 尿毒癥替代治療
- 【課件】2025屆高考英語一輪復(fù)習(xí)小作文講解課件
- 基底節(jié)腦出血護理查房
- 工程公司總經(jīng)理年終總結(jié)
- 2024年海南省高考地理試卷(含答案)
- 【企業(yè)盈利能力探析的國內(nèi)外文獻綜述2400字】
- 三年級上冊數(shù)學(xué)口算題1000道帶答案
- 蘇教版(2024新版)一年級上冊科學(xué)全冊教案教學(xué)設(shè)計
評論
0/150
提交評論