版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江蘇南京江浦高級(jí)中學(xué)高三數(shù)學(xué)試題第一次統(tǒng)測(cè)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線(xiàn):,直線(xiàn)與分別相交于點(diǎn),與的準(zhǔn)線(xiàn)相交于點(diǎn),若,則()A.3 B. C. D.2.已知雙曲線(xiàn)的焦距是虛軸長(zhǎng)的2倍,則雙曲線(xiàn)的漸近線(xiàn)方程為()A. B. C. D.3.下列不等式成立的是()A. B. C. D.4.函數(shù)y=sin2x的圖象可能是A. B.C. D.5.已知圓與拋物線(xiàn)的準(zhǔn)線(xiàn)相切,則的值為()A.1 B.2 C. D.46.已知函數(shù),則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.7.相傳黃帝時(shí)代,在制定樂(lè)律時(shí),用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計(jì)算過(guò)程,若輸入的的值為1,輸出的的值為()A. B. C. D.8.設(shè)集合,,則()A. B.C. D.9.正的邊長(zhǎng)為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.11.已知函數(shù)的圖像上有且僅有四個(gè)不同的關(guān)于直線(xiàn)對(duì)稱(chēng)的點(diǎn)在的圖像上,則的取值范圍是()A. B. C. D.12.我國(guó)南北朝時(shí)的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問(wèn)各得金幾何?”則在該問(wèn)題中,等級(jí)較高的二等人所得黃金比等級(jí)較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤二、填空題:本題共4小題,每小題5分,共20分。13.實(shí)數(shù),滿(mǎn)足,如果目標(biāo)函數(shù)的最小值為,則的最小值為_(kāi)______.14.已知,,,則的最小值是__.15.已知函數(shù)是定義在上的奇函數(shù),則的值為_(kāi)_________.16.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.18.(12分)在中,內(nèi)角的邊長(zhǎng)分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.19.(12分)在銳角三角形中,角的對(duì)邊分別為.已知成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)若的面積為求的值.20.(12分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程是是參數(shù)),若直線(xiàn)與圓相切,求實(shí)數(shù)的值.21.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值22.(10分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.(1)若P是DF的中點(diǎn),求異面直線(xiàn)BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長(zhǎng)度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)拋物線(xiàn)的定義以及三角形的中位線(xiàn),斜率的定義表示即可求得答案.【詳解】顯然直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn)如圖,過(guò)A,M作準(zhǔn)線(xiàn)的垂直,垂足分別為C,D,過(guò)M作AC的垂線(xiàn),垂足為E根據(jù)拋物線(xiàn)的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點(diǎn),所以MD為三角形NAC的中位線(xiàn),故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點(diǎn)睛】本題考查求拋物線(xiàn)的焦點(diǎn)弦的斜率,常見(jiàn)于利用拋物線(xiàn)的定義構(gòu)建關(guān)系,屬于中檔題.2、A【解析】
根據(jù)雙曲線(xiàn)的焦距是虛軸長(zhǎng)的2倍,可得出,結(jié)合,得出,即可求出雙曲線(xiàn)的漸近線(xiàn)方程.【詳解】解:由雙曲線(xiàn)可知,焦點(diǎn)在軸上,則雙曲線(xiàn)的漸近線(xiàn)方程為:,由于焦距是虛軸長(zhǎng)的2倍,可得:,∴,即:,,所以雙曲線(xiàn)的漸近線(xiàn)方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì),以及雙曲線(xiàn)的漸近線(xiàn)方程.3、D【解析】
根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對(duì)于,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,,錯(cuò)誤;對(duì)于,,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問(wèn)題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.4、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號(hào),即可判斷選擇.詳解:令,因?yàn)?,所以為奇函?shù),排除選項(xiàng)A,B;因?yàn)闀r(shí),,所以排除選項(xiàng)C,選D.點(diǎn)睛:有關(guān)函數(shù)圖象的識(shí)別問(wèn)題的常見(jiàn)題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)由函數(shù)的奇偶性,判斷圖象的對(duì)稱(chēng)性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).5、B【解析】
因?yàn)閳A與拋物線(xiàn)的準(zhǔn)線(xiàn)相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線(xiàn)的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、A【解析】
首先求得時(shí),的取值范圍.然后求得時(shí),的單調(diào)性和零點(diǎn),令,根據(jù)“時(shí),的取值范圍”得到,利用零點(diǎn)存在性定理,求得函數(shù)的零點(diǎn)所在區(qū)間.【詳解】當(dāng)時(shí),.當(dāng)時(shí),為增函數(shù),且,則是唯一零點(diǎn).由于“當(dāng)時(shí),.”,所以令,得,因?yàn)?,,所以函?shù)的零點(diǎn)所在區(qū)間為.故選:A【點(diǎn)睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點(diǎn),考查零點(diǎn)存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.7、B【解析】
根據(jù)循環(huán)語(yǔ)句,輸入,執(zhí)行循環(huán)語(yǔ)句即可計(jì)算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿(mǎn)足判斷條件;第次循環(huán):,,不滿(mǎn)足判斷條件;第次循環(huán):,,滿(mǎn)足判斷條件;輸出結(jié)果.故選:【點(diǎn)睛】本題考查了循環(huán)語(yǔ)句的程序框圖,求輸出的結(jié)果,解答此類(lèi)題目時(shí)結(jié)合循環(huán)的條件進(jìn)行計(jì)算,需要注意跳出循環(huán)的判定語(yǔ)句,本題較為基礎(chǔ).8、A【解析】
解出集合,利用交集的定義可求得集合.【詳解】因?yàn)?,又,所?故選:A.【點(diǎn)睛】本題考查交集的計(jì)算,同時(shí)也考查了一元二次不等式的求解,考查計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】
如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線(xiàn)面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)?,?由正弦定理可得,故,又因?yàn)?,?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問(wèn)題注意翻折前后的變量與不變量,外接球問(wèn)題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來(lái)計(jì)算,本題有一定的難度.10、B【解析】
列出每一次循環(huán),直到計(jì)數(shù)變量滿(mǎn)足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.11、D【解析】
根據(jù)對(duì)稱(chēng)關(guān)系可將問(wèn)題轉(zhuǎn)化為與有且僅有四個(gè)不同的交點(diǎn);利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線(xiàn)恒過(guò)定點(diǎn),通過(guò)數(shù)形結(jié)合的方式可確定;利用過(guò)某一點(diǎn)曲線(xiàn)切線(xiàn)斜率的求解方法可求得和,進(jìn)而得到結(jié)果.【詳解】關(guān)于直線(xiàn)對(duì)稱(chēng)的直線(xiàn)方程為:原題等價(jià)于與有且僅有四個(gè)不同的交點(diǎn)由可知,直線(xiàn)恒過(guò)點(diǎn)當(dāng)時(shí),在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過(guò)點(diǎn)的曲線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為由圖象可知,當(dāng)時(shí),與有且僅有四個(gè)不同的交點(diǎn)設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)直線(xiàn)與曲線(xiàn)交點(diǎn)個(gè)數(shù)確定參數(shù)范圍的問(wèn)題;涉及到過(guò)某一點(diǎn)的曲線(xiàn)切線(xiàn)斜率的求解問(wèn)題;解題關(guān)鍵是能夠通過(guò)對(duì)稱(chēng)性將問(wèn)題轉(zhuǎn)化為直線(xiàn)與曲線(xiàn)交點(diǎn)個(gè)數(shù)的問(wèn)題,通過(guò)確定直線(xiàn)恒過(guò)的定點(diǎn),采用數(shù)形結(jié)合的方式來(lái)進(jìn)行求解.12、C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的最小值為,確定出的值,進(jìn)而確定出C點(diǎn)坐標(biāo),結(jié)合目標(biāo)函數(shù)幾何意義,從而求得結(jié)果.【詳解】先做的區(qū)域如圖可知在三角形ABC區(qū)域內(nèi),由得可知,直線(xiàn)的截距最大時(shí),取得最小值,此時(shí)直線(xiàn)為,作出直線(xiàn),交于A點(diǎn),由圖象可知,目標(biāo)函數(shù)在該點(diǎn)取得最小值,所以直線(xiàn)也過(guò)A點(diǎn),由,得,代入,得,所以點(diǎn)C的坐標(biāo)為.等價(jià)于點(diǎn)與原點(diǎn)連線(xiàn)的斜率,所以當(dāng)點(diǎn)為點(diǎn)C時(shí),取得最小值,最小值為,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)線(xiàn)性規(guī)劃的問(wèn)題,在解題的過(guò)程中,注意正確畫(huà)出約束條件對(duì)應(yīng)的可行域,根據(jù)最值求出參數(shù),結(jié)合分式型目標(biāo)函數(shù)的意義求得最優(yōu)解,屬于中檔題目.14、.【解析】
因?yàn)椋归_(kāi)后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當(dāng)且僅當(dāng),取等號(hào).故答案為:【點(diǎn)睛】本題主要考查利用基本不等式求最值,考查學(xué)生的轉(zhuǎn)化能力和運(yùn)算求解能力.15、【解析】
先利用輔助角公式將轉(zhuǎn)化成,根據(jù)函數(shù)是定義在上的奇函數(shù)得出,從而得出函數(shù)解析式,最后求出即可.【詳解】解:,又因?yàn)槎x在上的奇函數(shù),則,則,又因?yàn)?所以,,所以.故答案為:【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn),三角函數(shù)的奇偶性和三角函數(shù)求值,考查了基本知識(shí)的應(yīng)用能力和計(jì)算能力,是基礎(chǔ)題.16、【解析】
由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)【解析】
(1)取AB的中點(diǎn)O,連接,證得,從而證得C′O⊥平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面⊥平面;(2)以O(shè)為原點(diǎn),AB,OC所在的直線(xiàn)為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點(diǎn)O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O(shè)為原點(diǎn),AB,OC所在的直線(xiàn)為y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.【點(diǎn)睛】本題考查了面面垂直的判定與證明,以及空間角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線(xiàn)面位置關(guān)系的判定定理和性質(zhì)定理,通過(guò)嚴(yán)密推理是線(xiàn)面位置關(guān)系判定的關(guān)鍵,同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.18、(1);(2).【解析】
(1)先由余弦定理求得,再由正弦定理計(jì)算即可得到所求值;
(2)運(yùn)用二倍角的余弦公式和兩角和的正弦公式,化簡(jiǎn)可得sinA+sinB=5sinC,運(yùn)用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點(diǎn)睛】本題考查正弦定理、余弦定理和面積公式的運(yùn)用,以及三角函數(shù)的恒等變換,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.19、(1);(2).【解析】
(1)根據(jù)成等差數(shù)列與三角形內(nèi)角和可知,再利用兩角和的正切公式,代入化簡(jiǎn)可得,同理根據(jù)三角形內(nèi)角和與余弦的兩角和公式與等比數(shù)列的性質(zhì)可求得,聯(lián)立即可求解求的值.(2)由(1)可知,再根據(jù)同角三角函數(shù)的關(guān)系與正弦定理可求得,再結(jié)合的面積為利用面積公式求解即可.【詳解】解:成等差數(shù)列,可得而,即,展開(kāi)化簡(jiǎn)得,因?yàn)?故①又成等比數(shù)列,可得,即,可得聯(lián)立解得(負(fù)的舍去),可得銳角;由可得,由為銳角,解得,因?yàn)闉殇J角,故可得,由正弦定理可得,又的面積為可得,解得.【點(diǎn)睛】本題主要考查了等差等比中項(xiàng)的運(yùn)用以及正切的和差角公式以及同角三角函數(shù)關(guān)系等.同時(shí)也考查了正弦定理與面積公式在解三角形中的運(yùn)用,屬于中檔題.20、【解析】
將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,直線(xiàn)的參數(shù)方程化為普通方程,再根據(jù)直線(xiàn)與圓相切,利用圓心到直線(xiàn)的距離等于半徑,即可求實(shí)數(shù)的值.【詳解】由,得,,即圓的方程為,又由消,得,直線(xiàn)與圓相切,,.【點(diǎn)睛】本題重點(diǎn)考查方程的互化,考查直線(xiàn)與圓的位置關(guān)系,解題的關(guān)鍵是利用圓心到直線(xiàn)的距離等于半徑,研究直線(xiàn)與圓相切.21、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項(xiàng)開(kāi)始的等比數(shù)列,由此即可求出答案;(2),分類(lèi)討論,當(dāng)時(shí),,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因?yàn)?,,兩式相減得:,即,是從第二項(xiàng)開(kāi)始的等比數(shù)列,∵∴,則,;(2),當(dāng)時(shí),;當(dāng)時(shí),設(shè)遞增,,所以實(shí)數(shù)的最小值.【點(diǎn)睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程進(jìn)度保證保函
- 保安人員職責(zé)保證
- 招標(biāo)文件條款的深入解讀
- 不放棄工作的承諾示范
- 玉石原料購(gòu)買(mǎi)協(xié)議
- 軟件服務(wù)及技術(shù)支持協(xié)議書(shū)
- 零件加工合同書(shū)范例
- 真情的承諾保證
- 國(guó)內(nèi)模特服務(wù)合同
- 調(diào)味品供應(yīng)合同
- 專(zhuān)題4.3 平面鏡成像【五大題型】【人教版2024】(原卷版)-2024-2025學(xué)年八年級(jí)上冊(cè)物理舉一反三系列(人教版2024)
- 2024年大學(xué)經(jīng)濟(jì)管理學(xué)院招聘考試題及答案
- 《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》數(shù)學(xué)新課標(biāo)解讀
- 《2023版CSCO鼻咽癌診療指南》解讀課件
- 咪咕在線(xiàn)測(cè)評(píng)題
- 2024年全國(guó)《勞動(dòng)教育》基礎(chǔ)知識(shí)考試題庫(kù)與答案
- 鍋爐能效測(cè)試實(shí)施管理制度
- 2023年新高考北京卷化學(xué)高考真題(含解析)
- 尋方問(wèn)藥縱橫談智慧樹(shù)知到答案2024年浙江中醫(yī)藥大學(xué)
- 高中英語(yǔ)課程標(biāo)準(zhǔn)解讀(2017年版)
- T31SAMA 005-2024 增材制造 金屬粉末床熔融制造操作安全要求
評(píng)論
0/150
提交評(píng)論