版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter7
SpaceVectorDescriptionandFieldOrientedControlofInductionMotors車用驅(qū)動電機原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsa)
squirrelcagewindingb)
RotorstructureofwoundwindingFig.7-1Schematicdiagramofrotorstructureofinductionmotor27.1TheRotorStructureandWorkingPrincipleofIMThestatorstructureoftheinductionmotorisbasicallythesameasthatofthesynchronousmotor.Themaindifferenceliesintherotorstructureandthegenerationprincipleoftherotormagneticfield.Therotorstructureofinductionmotor(IM)mainlyincludestwoparts:rotorironcoreandrotorwinding.Thecommonwindingtypesaresquirrelcagetypeandwoundtype.1.SquirrelcagewindingAsquirrel-cagewindingisaself-closingshort-circuitwinding.Itconsistsofabarinsertedintoeachrotorslotandannularendringsatbothends.Iftheironcoreisremoved,theentirewindingislikea“circularsquirrelcage”.2.WoundwindingTheslotofthewoundrotorisembeddedwithathree-phasewindingcomposedofinsulatedwires.Thethreeoutgoingwiresofthewindingareconnectedtothethreecollectorringsmountedontheshaft,andareconnectedtotheexternalcircuitthroughbrushes.Thefeatureofthisrotoristhatanexternaladjustableresistorcanbeconnectedtotherotorwindingtoimprovethestartingandspeedregulationperformanceofthemotor.37.1.2WorkingPrincipleofThree-phaseIMThestatorisathree-phasesymmetricalwinding,anditsstructureisthesameasthatofathree-phasesynchronousmotor.Atthesametime,therotorisalsoequivalenttothree-phasesymmetricalwindingsa-x,b-yandc-z,andtheyareshort-circuited,thusformingabasicthree-phaseinductionmotor
Fig.7-2aTheequivalentphysicalmodelofthe
three-phaseinductionmotor4
7.1.2WorkingPrincipleofThree-phaseIM57.1.3Stator,RotorandMagneticFieldSynchronousCoordinateSystems
Table7-1Therepresentationandtransformationrelationshipsofcurrentvectorsinthreecoordinatesystems67.2VectorsEquationofIM7.2.1Stator/RotorInductanceandFluxLinkageofIM
Fig.7-3Theequivalentfour-coilprototypemotormodelofIM77.2.1Stator/RotorInductanceandFluxLinkageofIMFig.7-4Thestator/rotorcurrent,andrespectivefluxlinkagevectorsofthethree-phaseIM87.2.2SpaceVectorEquationsunderStationaryReferenceFrame
9
7.2.3SpaceVectorEquationsunderRotor-fixedabcReferenceFrame107.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame
11
7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame12
7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame13
7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame14Fig.7-5Steady-statevectordiagramofthethree-phaseIM7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame157.3RotorMagneticFieldEstablishmentProcessandItsOrientationFig.7-6Therotormagneticfieldisrepresentedasthecombinationoftheair-gapmagneticfieldandtherotorleakagemagneticfield
167.3RotorMagneticFieldEstablishmentProcessandItsOrientationFig.7-6Therotormagneticfieldisrepresentedasthecombinationoftheair-gapmagneticfieldandtherotorleakagemagneticfield
177.3.1Rotort-axisMagnetomotiveForceInducedbyMotionalElectromotiveForceFig.7-7Therotorequivalentcurrentvectorwhentherotormagneticfieldamplitudeisconstanta)Rotormagnetomotiveforcevectorformedbyrotorbarcurrent
b)Thespatialdistributionofmotionalelectromotiveforceandcurrentmagnitudeintheconductor18Fig.7-8
Therotorequivalentcurrentvectorwhentheamplitudeoftherotormagneticfieldisconstanta)Themagnetomotiveforcevectorsoftherotorcoilcurrentsandtheirsynthesisb)Theequivalentexcitationcurrentatt-axis
7.3.1Rotort-axisMagnetomotiveForceInducedbyMotionalElectromotiveForce
19Fig.7-9RotorcurrentvectorwhenrotormagneticfieldamplitudechangesDuringthedynamicoperationofthemotor,iftheamplitudeoftherotormagneticfieldchanges,transformerelectromotiveforcewillbeinducedineachrotorbar.AtthemomentshowninFig.7-9a,iftheamplitudeoftherotormagneticfieldisincreasing,accordingtoLenz'slaw,theelectromotiveforceineachbarwillbeshowninFig.7-9a.
7.3.1Rotorm-axisMagnetomotiveForceInducedbyInducedElectromotiveForcea)Rotorcurrentandrotormagnetomotiveforceb)Spatialdistributionoftransformerelectromotiveforceandcurrentmagnitudeinthebar207.3.3DefinitionandCharacteristicsofRotorMagneticField-OrientedCoordinateSystemFig.7-11RotorcagewindingisequivalenttoMTaxiscoilFig.7-12MagneticfieldorientedMTcoordinatesystem
217.3.4StatorandRotorFluxLinkageEquation
227.3.6StatorandRotorVoltageEquations
237.3.6StatorandRotorCurrentEquations
247.3.6StatorandRotorCurrentEquations
257.3.6StatorandRotorCurrentEquationsFig.7-13Vectordiagramofmagneticfluxandcurrentforathree-phaseinductionmotorafterfieldorientation
a)Dynamicvectordiagramoffluxlinkageandcurrent267.3.7TorqueEquation
27
7.3.7TorqueEquation287.3.7TorqueEquation
297.4PrincipleofVectorControlbasedonCurrentPhasePlane7.4.1ControlConstraints
307.4.1ControlConstraintsonCurrentPhasePlane
317.4.1ControlConstraintsonCurrentPhasePlane
Fig.7-18Thediagramsofcontrolconstraintsandcontrollawforinductionmotor327.4.1ControlConstraintsonCurrentPhasePlane
337.4.2FieldWeakeningControlProcessonCurrentPhasePlaneFig.7-19OperatingregionoftheinductionmotoracrossthefullspeedrangeThefieldweakeningcontroloftheinductionmotorshouldaimforthemaximumtorqueoutput,takingintoaccounttheconstraintsofvoltageandcurrenttoallocatethecurrentreasonably.Duetothesevoltageandcurrentconstraints,theeffectivetorqueoutputoftheinductionmotordecreasesinthefieldweakeningregion.Tofullyutilizethemaximumtorquecapabilityofthedrivesystemundervoltageandcurrentlimitations,themostrationalutilizationofvoltageandcurrentisrequired.Theoperatingspeedrangeofaninductionmotorcanbedividedintothreeregions:constanttorqueregion,constantpowerregion,andconstantvoltageregion,asshowninFig.7-19.Whenthemotorspeedislessthanthebasespeedoffieldweakening,sincethegeneratedbackelectromotiveforceislessthanthemaximumvoltageoutputbytheinverter,themotoroperationisonlylimitedbythemaximumcurrentallowedbythemotor,andthemaximumoutputtorquecanremainunchanged.Therefore,thisareaisnamedasthe“constanttorquearea”.Abovethefieldweakeningbasespeed,themotorentersthefieldweakeningregion,wherethebackelectromotiveforceisalmostequaltothemaximumvoltageoutputoftheinverter.Themotoroperationisconstrainedbyboththemaximumcurrentandmaximumvoltage,buttheoutputpowerremainsconstant,henceitiscalledthe“constantpowerregion”.Asthemotorspeedcontinuestoincrease,thecurrentcannotbemaintainedatitsmaximumvalueduetothelimitationofthemaximumsliprate.Atthispoint,themotorisonlyconstrainedbythemaximumvoltage,andbothoutputpowerandtorquedecreasesharplywithincreasingspeed,thusitiscalledthe“constantvoltageregion”.Chapter7
SpaceVectorDescriptionandFieldOrientedControlofInductionMotors車用驅(qū)動電機原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter8
ControlMethodsandTheirImplementationofVehicleDriveMotors車用驅(qū)動電機原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors368.1PrincipleofField-OrientedControl(FOC)Thefour-coilprototypemotoroffersmorecontrolfreedom.Takingstatorcontrolasanexample,thebasicvectorcontrolarchitectureofthefour-coilprototypemotorisshowninFig.8-1.Thiscontrolstructureisbasedonthespacevectorform.Fig.8-1Basicvectorcontrolarchitectureofthefour-coilprototypemotor
378.1PrincipleofField-OrientedControl(FOC)
Fig.8-2FOCstructureofthePMSM388.1PrincipleofField-OrientedControl(FOC)IncontrasttoPMSM,thegenerationoftherotormagneticfluxininductionmotorsarisesfromtheexcitationofthestatorcurrent.Therefore,unlikePMSM,inrotormagneticfieldorientationvectorcontrol,thedirectionoftherotormagneticfieldcannotbedetectedsimplybysensingthemechanicalpositionoftherotor.Itrequiresanalysisandestimationoftherotormagneticfluxbasedonsignalssuchasstatorcurrent,rotorspeed,andstatorvoltage.Theestimationmethodforrotormagneticfluxcanbereferredtothevoltage-currentmodeorcurrent-speedmodelintroducedinSection8.6.OtherissuesregardingFOCininductionmotorareessentiallysimilartothoseinPMSM.Fig.8-3FOCstructureoftheinductionmotor39Three-PhaseACPower
408.2PulseWidthModulation(PWM)InverterandSpaceVectorModulation8.2.1BasicStatorVoltageVector
Fig.8-4StatorVoltageVector-WindingsarepoweredbytheinverterItisdefinedthatwhentheuppertubeofabridgearmisinthe“on”state,theswitchstateofthebridgearmis“1”;whenthelowertubeofthebridgearmis“on”,theswitchstateis“0”.Inthisway,thethreebridgearmstatecombinationshaveatotalofeightstatesof000,001,010,011,100,101,110,and111,whicharecalledeight“basicvoltagespacevectors”(referredtoas“voltagebasisvectors”).Amongthem,000and111maketheinverteroutputvoltagezero,sothesetwoswitchingmodesarecalledzerostates.418.2.1BasicStatorVoltageVector
Fig.8-5Statorvoltagevector(100vector)428.2.1BasicStatorVoltageVector
Fig.8-6Thebasicvoltagespacevectors438.2.2Volt-SecondEquivalencePrincipleandSVPWMFig.8-7SynthesisofSpaceVoltageVectors
44SVPWMVoltageVectorInscribedCircle內(nèi)切矢量圓
458.2.2Volt-SecondEquivalencePrincipleandSVPWM
Fig.8-8basicvoltagespacevectors468.2.2Volt-SecondEquivalencePrincipleandSVPWM
Fig.8-9StatorreferencevoltagevectorsynthesisInthesecondstep,afterthesectorisdetermined,thevoltagecommandissynthesizedfromthenon-zerovoltagebasevectorandzerovoltagevectorthatcomposethesector.478.2.2Volt-SecondEquivalencePrincipleandSVPWMFig.8-10Thefirstsectorvoltagecommandthree-phasePWMwaveform
48AVideotoIllustrateGenerationProcessofSVPWM49
Commonemitterconnectionandvolt-amperecharacteristicsofNPNtransistors
8.4PowerSemiconductorDevices-GTR50
FieldEffectTransistor(FET)isadevicethatcontrolstheconductivityofasemiconductorbychangingtheelectricfieldthroughthechannel.Thecurrentpassingthroughitchangeswiththestrengthoftheelectricfield.Ithastwotypes:junctiontypeandsurfacetype.TheformerisbasedonthePNjunction,andthelattercontrolsthecurrentinthechannelwiththesurfaceelectricfield.
Theelectricfieldoftheinsulatinglayeriscontrolledbyanappliedvoltagetochangethesurfacefieldeffectofthechannelconductanceinthesemiconductor,soitisalsocalledaninsulatedgatefieldeffecttransistor.
Dependingonthematerialusedfortheinsulatinglayer,therearevarioustypesofIGFETs.
Atpresent,themostwidelyusedmetal-oxide-semiconductorfieldeffecttransistor(MOSFET)orMOStubeforshort.SchematicdiagramofpowerMOSFETunitstructureElectricalgraphicsymbolsforMOSFETs8.4PowerSemiconductorDevices-MOSFET518.4PowerSemiconductorDevices-MOSFET
Commonemittercircuit,outputcharacteristicsandtransfercharacteristicsofn-channelenhancement-modeP-MOSFETa)b)c)52
Commonemittercircuit,outputcharacteristicsandtransfercharacteristicsofn-channelenhancement-modeP-MOSFET8.4PowerSemiconductorDevices-MOSFET538.4PowerSemiconductorDevices-MOSFET
548.4PowerSemiconductorDevices-IGBTSchematicdiagram,symbolandequivalentcircuitofIGBT
558.4PowerSemiconductorDevices-IGBTThevolt-amperecharacteristicsandshort-circuitcharacteristicsofIGBTs
568.4PowerSemiconductorDevicesThedevelopmentofsemiconductormaterialscanbedividedintothefollowingstages:1)SiandGerepresentthefirstgenerationofsemiconductormaterials.2)GaAs(galliumarsenide),AlAs,andsimilarmaterialsdevelopedinthe1960sareconsideredthesecondgenerationofsemiconductormaterials.3)Inthepasttwodecades,thethirdgenerationofwidebandgapsemiconductormaterials,primarilySiCandGaN,hasgraduallyemerged.Thebandgapwidthofsiliconcarbide(SiC)isaboutthreetimesthatofsilicon(Si)material,givingSiCsignificantadvantagesoverSiintermsofvoltageresistanceandhigh-temperaturetolerance.Additionally,SiCdevicesexhibitmuchlowerleakagecurrentscomparedtoSidevices.Consequently,SiCdevicescanoperateinharshenvironmentssuchashightemperaturesandhighradiation.Table8-4PhysicalPropertiesofMajorPowerSemiconductorMaterials578.5IntegratedTechnologiesforAutomotiveMotorControllersThecompositionofthevehiclemotorcontrollerincludeshardwareandsoftware.Thehardwaremainlyincludesthemainpartssuchaspowercircuit,controlcircuitandstructuralheatdissipation.Thehardwaremainlyincludesthemainpartssuchaspowercircuit,controlcircuitandstructuralheatdissipation.
ThesoftwareincludesthesoftwareofthecontrolcircuitMCUandthesoftwareoftheprogrammablelogicdeviceintheprotectioncircuit.
Thepowercircuitmainlyincludespowermodules,capacitors,powerbusbars,etc.Exampleofcompositionofvehiclemotorcontroller58Audi-EtronMotorController59Thedemandcharacteristicsforautomotivepowermodulescanbesummarizedasfollows:1)WideTemperatureCharacteristics:Oneofthemostimportantandchallengingtechnicalrequirementsforpowermodulesinautomotiveapplicationsistheabilitytooperatenormallyatambienttemperaturesupto105°Cwithoutdegradingperformanceorreducingthelifespanofthemodule.2)ComplexOperatingConditions:Unlikeindustrialapplicationsinvolvingmotordrives,theoperatingconditionsforelectricvehiclesaremorecomplex.Forexample,inurbandrivingconditions,thevehiclefrequentlytransitionsbetweenacceleration,deceleration,andcruisingstates.3)HighReliabilityRequirements:Automotivepowermodulesmustmatchthelifespanofthevehicle,placinghigherdemandsonthedurabilityoftheIGBT.Typically,theoperationallifespanofapowermoduleis15yearsormore.Themainfactorsinfluencingpowermodulefailureincludepowercycling,thermalcycling,andvibration.Theselectionofpowermodulesforautomotiveelectricdrivesystemsmainlyconsidersthefollowingaspects:1)RatedVoltageandRatedCurrent:FormostA0-classandhighernewenergyvehicles,exceptforthosewithminimalhybridization,theratedvoltageofthepowerbatterypackisgenerallyaround300V.Duringbrakingorcharging,thebatteryvoltagemayriseabove400V.2)SwitchingFrequencyandSwitchingLoss:Increasingtheswitchingfrequencycanimprovethepowerdensityofthemotorcontroller,reducethesizeofthefilter,andminimizeoreliminatethesnubbercircuit,therebyreducingtheoverallsizeandweightofthecontroller.Additionally,itcangenerateelectromagneticinterference(EMC)noise.3)DynamicCharacteristicsandDeviceProtection:Theswitchingdevicesshouldbecapableofwithstandinghighvoltage/currentchangerates.Thedrivingpowerofthedeviceshouldbeverysmall,whichrequiresthedevicetohaveaverylowinputcapacitanceandveryhighinputimpedance(severalMΩormore).4)Cost:Thepriceofpowermodulescanaccountfor30-40%ofthetotalcostoftheinverter.Therefore,itisessentialtochoosedeviceswithahighperformance-to-priceratiowheneverpossible.8.5IntegratedTechnologiesforAutomotiveMotorControllers60DrivingCircuit61TheFunctionsofDrivingCircuitThefunctionsofdrivingcircuit:poweramplification,isolation,andwaveformadjustment628.5IntegratedTechnologiesforAutomotiveMotorControllersSchematicdiagramofatypicalelectricalisolationmethodTheIGBTdrivecircuitistheinterfacebetweenthelow-voltagecontrolcircuitandthehigh-voltagemaincircuit,andmainlyplaystheroleofdrivingpoweramplificationandprotectingpowerdevices.IthasanimportantinfluenceontheswitchingcharacteristicsoftheIGBT,includingswitchingspeed,switchinglosses,peaksandoscillationsofthewaveform,etc.Thedrivecircuitisanimportantlinkconnectingthecontrolcircuitandthepowercircuit,andshouldplaytheroleofhighandlowvoltageelectricalisolation.Atpresent,mainstreamdrivecircuitscanbedividedintothreecategoriesaccordingtoisolationmethods:opticalisolation,magneticisolation,andcapacitiveisolation.1)
Optocouplerisolationdriver:Theopto-isolateddriverusuallyusesanoptocouplertoachieveelectricalisolation.Sincetheoptocouplerisolationcanonlytransmitsignalsinonedirection,thehigh-frequencyinterferencesignalonthesecondarysidewillnotaffecttheprimaryside,soithastheadvantagesofstronganti-interferenceabilityandstableoperation.
2)
Magneticallyisolateddrive:Themagneticisolationdriveadoptstheisolationmethodofthepulsetransformer,andthesignalandenergyaretransmittedthroughthemagneticfield.
3)
Capacitiveisolateddrive:Capacitiveisolationdrivesusecapacitorsforisolationanduseelectricfieldstotransmitsignals.。638.5IntegratedTechnologiesforAutomotiveMotorControllersThecommonlyusedautomotivefiltercapacitorsaremainlydividedintotwocategories:electrolyticcapacitorsandfilmcapacitors.Tofurtherreducethesizeandweightofinvertersandmeettherequirementsofwidevoltagerangeandhigh-powerapplications,acompact,low-loss,cost-effectiveDC-Linkcapacitorisneeded.Comparedtoelectrolyticcapacitors,filmcapacitorshavethefollowingadvantages:ExcellentTemperatureCharacteristics:DC-Linkfilmcapacitorsusehigh-temperaturepolypropylenefilm,offeringgoodtemperaturestability.Incontrast,thecapacitanceofelectrolyticcapacitorsdropssharplyatlowtemperatures,affectingtheirapplicationincoldenvironments.AbilitytoWithstandReverseVoltage:Ifareversevoltageexceedingthespecifiedvalueisappliedtoanelectrolyticcapacitor,achemicalreactionoccursinsidethecapacitor,potentiallycausinganexplosionorelectrolyteleakageasinternalpressureisreleased.Filmcapacitors,beingnon-polar,canwithstandbidirectionalvoltagesurges,offeringhigherreliability.StrongPulseVoltageResistance:Filmcapacitorshavebetterimpactvoltageresistancecomparedtoelectrolyticcapacitors.DryDesign,NoElectrolyteLeakage:Filmcapacitorsdonothaveissueswithelectrolyteleakageandacidpollution.LowESRandHighRippleCurrentCapability:Filmcapacitorstypicallyhavelowerequivalentseriesresistance(ESR),witharipplecurrentcapabilityofupto200mA/pF.Incontrast,electrolyticcapacitorshavemuchlowerripplecurrentcapability.LowESL:Thelowinductancedesignofinvertersrequiresthemaincomponent,theDC-Linkcapacitor,tohaveextremelylowequivalentseriesinductance(ESL).High-performanceDC-Linkfilmcapacitorsintegratethebusbarintothecapacitormodule,reducingself-inductanceandminimizingoscillationeffectsatoperatingswitchingfrequencies.LongServiceLife:Filmcapacitorshavealongerservicelifeunderratedvoltageandratedoperatingtemperatureconditions.648.5IntegratedTechnologiesforAutomotiveMotorControllers
MotorControllerCoolingSystemThermalResistanceCircuitEquivalentThevehiclemotorcontrollerismainlyliquid-cooled,andtheheatingelementiscooledmainlybyconductionheatdissipation.
Thepowermoduleofthevehiclemotorcontrolleradoptsacompactarrangement,andthepowermodulecanbeapproximatelyconsideredasasingleheatsource;atthesametime,thecoolingsystemadoptsanoptimizeddesignscheme,sothattheheatofthecoolingsystemcanbedissipatedintime,soitcanbeconsideredasaradiatorforthemotorcontroller.65
Halltypecurrentdetectionprinciple8.5IntegratedTechnologiesforAutomotiveMotorControllers668.5IntegratedTechnologiesforAutomotiveMotorControllers
Fig.8-26CurrentDetectionPrincipleBasedonSamplingResistor678.5IntegratedTechnologiesforAutomotiveMotorControllersSchematicdiagramofMCUworkingmodeconversionThefollowingexamplesillustratetypicalsoftwarefunctionmodules.(1)
MotorControlStateMachineDesign.
Theintroductionofstatemachine(StateMachine)isverynecessaryforconcurrenttaskapplications.Itcanensurethattheembeddedcontrollermakesareasonable/timelyresponsetoexternalinputbydividingdifferentworkingmodes.
Thestateofthemotorcanbedividedinto:Initialization、Standby、HVActive、SpdqCtl、TrqCtl、DisCharge、Failure.(2)
Motortorquecontrolfunction.
TorquecontrolmeansthattheMCUreceivesthetorquecontrolrequestsentbythehostcomputer,andoutputsthetorquethatmatchestheworkingconditionswhileconsideringtheworkingconditionsofthemotorsystem(voltage,speed,temperature).Thetorquecontrolandfunctionrealizationofthedrivemotormainlyincludethemaximumtorquetocurrentratio(MTPA)controlinthelow-speedconstanttorquecontrolarea,theconstantpowerfieldweakeningcontrolinthehigh-speedarea,thespeedcontrol,andthevoltagecontrol.(3)
Communicationmodulesandotherfunctions.
TheelectronicstructureofmodernautomobilesismainlytoconnectdifferentECUsthroughtheCANbuscommunicationsystemtoformadistributedcontrolsystem.68PMSM
V.S.InductionMotorPMSM
orientationInductionMotororientation
SelectingthearbitrarymagneticfieldsynchronousMTcoordinatesystemtotherotorDQcoordinatesystem.
698.6RotorMagneticFieldPositionMeasurementandEstimationforACMotors8.6.1TypicalMotorPositionandSpeedMeasur
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年跨境電商債權(quán)擔保與結(jié)算服務(wù)合同3篇
- 15 小島 說課稿-2024-2025學年統(tǒng)編版語文五年級上冊
- 2024游樂場場地租賃及節(jié)假日親子活動策劃合同范本3篇
- 2024招投標部門權(quán)限管理與職責明確服務(wù)合同3篇
- 6 班級生活有規(guī)則(說課稿)-2024-2025學年統(tǒng)編版道德與法治二年級上冊
- 電梯應(yīng)急救援預案
- 2024水泥銷售合同(含促銷和折扣條件)
- 2024沙石資源開采與物流運輸服務(wù)合同3篇
- 2024版消防水系統(tǒng)關(guān)鍵設(shè)備維護服務(wù)協(xié)議版B版
- 2024汪姣與周洋二零二四年度婚姻解除協(xié)議及財產(chǎn)分割3篇
- 安全員崗位競聘課件
- 北京市通州區(qū)2023-2024學年高三上學期期末考試政治試題 含解析
- 房屋代持協(xié)議協(xié)議書2024年
- 2024至2030年中國船供油行業(yè)市場競爭現(xiàn)狀及發(fā)展趨勢分析報告
- 2025年中考英語熱點時文閱讀-發(fā)明創(chuàng)造附解析
- 反訴狀(業(yè)主反訴物業(yè))(供參考)
- 《飛機載重平衡》-課件:認知配載工作流程
- 裝飾材料與施工工藝智慧樹知到答案2024年泉州華光職業(yè)學院
- 大學生心理健康教育常見困擾與自我調(diào)適智慧樹知到期末考試答案章節(jié)答案2024年浙江師范大學
- 工程資金監(jiān)管協(xié)議范本
- 服裝新店開業(yè)活動促銷方案
評論
0/150
提交評論