《車用驅(qū)動電機原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 7 Space Vector Description;Chapter 8 Control Methods and Their Implementation_第1頁
《車用驅(qū)動電機原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 7 Space Vector Description;Chapter 8 Control Methods and Their Implementation_第2頁
《車用驅(qū)動電機原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 7 Space Vector Description;Chapter 8 Control Methods and Their Implementation_第3頁
《車用驅(qū)動電機原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 7 Space Vector Description;Chapter 8 Control Methods and Their Implementation_第4頁
《車用驅(qū)動電機原理與控制基礎(chǔ) 第2版》 課件 鐘再敏 Chapter 7 Space Vector Description;Chapter 8 Control Methods and Their Implementation_第5頁
已閱讀5頁,還剩74頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Chapter7

SpaceVectorDescriptionandFieldOrientedControlofInductionMotors車用驅(qū)動電機原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsa)

squirrelcagewindingb)

RotorstructureofwoundwindingFig.7-1Schematicdiagramofrotorstructureofinductionmotor27.1TheRotorStructureandWorkingPrincipleofIMThestatorstructureoftheinductionmotorisbasicallythesameasthatofthesynchronousmotor.Themaindifferenceliesintherotorstructureandthegenerationprincipleoftherotormagneticfield.Therotorstructureofinductionmotor(IM)mainlyincludestwoparts:rotorironcoreandrotorwinding.Thecommonwindingtypesaresquirrelcagetypeandwoundtype.1.SquirrelcagewindingAsquirrel-cagewindingisaself-closingshort-circuitwinding.Itconsistsofabarinsertedintoeachrotorslotandannularendringsatbothends.Iftheironcoreisremoved,theentirewindingislikea“circularsquirrelcage”.2.WoundwindingTheslotofthewoundrotorisembeddedwithathree-phasewindingcomposedofinsulatedwires.Thethreeoutgoingwiresofthewindingareconnectedtothethreecollectorringsmountedontheshaft,andareconnectedtotheexternalcircuitthroughbrushes.Thefeatureofthisrotoristhatanexternaladjustableresistorcanbeconnectedtotherotorwindingtoimprovethestartingandspeedregulationperformanceofthemotor.37.1.2WorkingPrincipleofThree-phaseIMThestatorisathree-phasesymmetricalwinding,anditsstructureisthesameasthatofathree-phasesynchronousmotor.Atthesametime,therotorisalsoequivalenttothree-phasesymmetricalwindingsa-x,b-yandc-z,andtheyareshort-circuited,thusformingabasicthree-phaseinductionmotor

Fig.7-2aTheequivalentphysicalmodelofthe

three-phaseinductionmotor4

7.1.2WorkingPrincipleofThree-phaseIM57.1.3Stator,RotorandMagneticFieldSynchronousCoordinateSystems

Table7-1Therepresentationandtransformationrelationshipsofcurrentvectorsinthreecoordinatesystems67.2VectorsEquationofIM7.2.1Stator/RotorInductanceandFluxLinkageofIM

Fig.7-3Theequivalentfour-coilprototypemotormodelofIM77.2.1Stator/RotorInductanceandFluxLinkageofIMFig.7-4Thestator/rotorcurrent,andrespectivefluxlinkagevectorsofthethree-phaseIM87.2.2SpaceVectorEquationsunderStationaryReferenceFrame

9

7.2.3SpaceVectorEquationsunderRotor-fixedabcReferenceFrame107.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame

11

7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame12

7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame13

7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame14Fig.7-5Steady-statevectordiagramofthethree-phaseIM7.2.4SpaceVectorEquationunderArbitraryMagneticFieldSynchronousRotatingMTReferenceFrame157.3RotorMagneticFieldEstablishmentProcessandItsOrientationFig.7-6Therotormagneticfieldisrepresentedasthecombinationoftheair-gapmagneticfieldandtherotorleakagemagneticfield

167.3RotorMagneticFieldEstablishmentProcessandItsOrientationFig.7-6Therotormagneticfieldisrepresentedasthecombinationoftheair-gapmagneticfieldandtherotorleakagemagneticfield

177.3.1Rotort-axisMagnetomotiveForceInducedbyMotionalElectromotiveForceFig.7-7Therotorequivalentcurrentvectorwhentherotormagneticfieldamplitudeisconstanta)Rotormagnetomotiveforcevectorformedbyrotorbarcurrent

b)Thespatialdistributionofmotionalelectromotiveforceandcurrentmagnitudeintheconductor18Fig.7-8

Therotorequivalentcurrentvectorwhentheamplitudeoftherotormagneticfieldisconstanta)Themagnetomotiveforcevectorsoftherotorcoilcurrentsandtheirsynthesisb)Theequivalentexcitationcurrentatt-axis

7.3.1Rotort-axisMagnetomotiveForceInducedbyMotionalElectromotiveForce

19Fig.7-9RotorcurrentvectorwhenrotormagneticfieldamplitudechangesDuringthedynamicoperationofthemotor,iftheamplitudeoftherotormagneticfieldchanges,transformerelectromotiveforcewillbeinducedineachrotorbar.AtthemomentshowninFig.7-9a,iftheamplitudeoftherotormagneticfieldisincreasing,accordingtoLenz'slaw,theelectromotiveforceineachbarwillbeshowninFig.7-9a.

7.3.1Rotorm-axisMagnetomotiveForceInducedbyInducedElectromotiveForcea)Rotorcurrentandrotormagnetomotiveforceb)Spatialdistributionoftransformerelectromotiveforceandcurrentmagnitudeinthebar207.3.3DefinitionandCharacteristicsofRotorMagneticField-OrientedCoordinateSystemFig.7-11RotorcagewindingisequivalenttoMTaxiscoilFig.7-12MagneticfieldorientedMTcoordinatesystem

217.3.4StatorandRotorFluxLinkageEquation

227.3.6StatorandRotorVoltageEquations

237.3.6StatorandRotorCurrentEquations

247.3.6StatorandRotorCurrentEquations

257.3.6StatorandRotorCurrentEquationsFig.7-13Vectordiagramofmagneticfluxandcurrentforathree-phaseinductionmotorafterfieldorientation

a)Dynamicvectordiagramoffluxlinkageandcurrent267.3.7TorqueEquation

27

7.3.7TorqueEquation287.3.7TorqueEquation

297.4PrincipleofVectorControlbasedonCurrentPhasePlane7.4.1ControlConstraints

307.4.1ControlConstraintsonCurrentPhasePlane

317.4.1ControlConstraintsonCurrentPhasePlane

Fig.7-18Thediagramsofcontrolconstraintsandcontrollawforinductionmotor327.4.1ControlConstraintsonCurrentPhasePlane

337.4.2FieldWeakeningControlProcessonCurrentPhasePlaneFig.7-19OperatingregionoftheinductionmotoracrossthefullspeedrangeThefieldweakeningcontroloftheinductionmotorshouldaimforthemaximumtorqueoutput,takingintoaccounttheconstraintsofvoltageandcurrenttoallocatethecurrentreasonably.Duetothesevoltageandcurrentconstraints,theeffectivetorqueoutputoftheinductionmotordecreasesinthefieldweakeningregion.Tofullyutilizethemaximumtorquecapabilityofthedrivesystemundervoltageandcurrentlimitations,themostrationalutilizationofvoltageandcurrentisrequired.Theoperatingspeedrangeofaninductionmotorcanbedividedintothreeregions:constanttorqueregion,constantpowerregion,andconstantvoltageregion,asshowninFig.7-19.Whenthemotorspeedislessthanthebasespeedoffieldweakening,sincethegeneratedbackelectromotiveforceislessthanthemaximumvoltageoutputbytheinverter,themotoroperationisonlylimitedbythemaximumcurrentallowedbythemotor,andthemaximumoutputtorquecanremainunchanged.Therefore,thisareaisnamedasthe“constanttorquearea”.Abovethefieldweakeningbasespeed,themotorentersthefieldweakeningregion,wherethebackelectromotiveforceisalmostequaltothemaximumvoltageoutputoftheinverter.Themotoroperationisconstrainedbyboththemaximumcurrentandmaximumvoltage,buttheoutputpowerremainsconstant,henceitiscalledthe“constantpowerregion”.Asthemotorspeedcontinuestoincrease,thecurrentcannotbemaintainedatitsmaximumvalueduetothelimitationofthemaximumsliprate.Atthispoint,themotorisonlyconstrainedbythemaximumvoltage,andbothoutputpowerandtorquedecreasesharplywithincreasingspeed,thusitiscalledthe“constantvoltageregion”.Chapter7

SpaceVectorDescriptionandFieldOrientedControlofInductionMotors車用驅(qū)動電機原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter8

ControlMethodsandTheirImplementationofVehicleDriveMotors車用驅(qū)動電機原理與控制基礎(chǔ)(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors368.1PrincipleofField-OrientedControl(FOC)Thefour-coilprototypemotoroffersmorecontrolfreedom.Takingstatorcontrolasanexample,thebasicvectorcontrolarchitectureofthefour-coilprototypemotorisshowninFig.8-1.Thiscontrolstructureisbasedonthespacevectorform.Fig.8-1Basicvectorcontrolarchitectureofthefour-coilprototypemotor

378.1PrincipleofField-OrientedControl(FOC)

Fig.8-2FOCstructureofthePMSM388.1PrincipleofField-OrientedControl(FOC)IncontrasttoPMSM,thegenerationoftherotormagneticfluxininductionmotorsarisesfromtheexcitationofthestatorcurrent.Therefore,unlikePMSM,inrotormagneticfieldorientationvectorcontrol,thedirectionoftherotormagneticfieldcannotbedetectedsimplybysensingthemechanicalpositionoftherotor.Itrequiresanalysisandestimationoftherotormagneticfluxbasedonsignalssuchasstatorcurrent,rotorspeed,andstatorvoltage.Theestimationmethodforrotormagneticfluxcanbereferredtothevoltage-currentmodeorcurrent-speedmodelintroducedinSection8.6.OtherissuesregardingFOCininductionmotorareessentiallysimilartothoseinPMSM.Fig.8-3FOCstructureoftheinductionmotor39Three-PhaseACPower

408.2PulseWidthModulation(PWM)InverterandSpaceVectorModulation8.2.1BasicStatorVoltageVector

Fig.8-4StatorVoltageVector-WindingsarepoweredbytheinverterItisdefinedthatwhentheuppertubeofabridgearmisinthe“on”state,theswitchstateofthebridgearmis“1”;whenthelowertubeofthebridgearmis“on”,theswitchstateis“0”.Inthisway,thethreebridgearmstatecombinationshaveatotalofeightstatesof000,001,010,011,100,101,110,and111,whicharecalledeight“basicvoltagespacevectors”(referredtoas“voltagebasisvectors”).Amongthem,000and111maketheinverteroutputvoltagezero,sothesetwoswitchingmodesarecalledzerostates.418.2.1BasicStatorVoltageVector

Fig.8-5Statorvoltagevector(100vector)428.2.1BasicStatorVoltageVector

Fig.8-6Thebasicvoltagespacevectors438.2.2Volt-SecondEquivalencePrincipleandSVPWMFig.8-7SynthesisofSpaceVoltageVectors

44SVPWMVoltageVectorInscribedCircle內(nèi)切矢量圓

458.2.2Volt-SecondEquivalencePrincipleandSVPWM

Fig.8-8basicvoltagespacevectors468.2.2Volt-SecondEquivalencePrincipleandSVPWM

Fig.8-9StatorreferencevoltagevectorsynthesisInthesecondstep,afterthesectorisdetermined,thevoltagecommandissynthesizedfromthenon-zerovoltagebasevectorandzerovoltagevectorthatcomposethesector.478.2.2Volt-SecondEquivalencePrincipleandSVPWMFig.8-10Thefirstsectorvoltagecommandthree-phasePWMwaveform

48AVideotoIllustrateGenerationProcessofSVPWM49

Commonemitterconnectionandvolt-amperecharacteristicsofNPNtransistors

8.4PowerSemiconductorDevices-GTR50

FieldEffectTransistor(FET)isadevicethatcontrolstheconductivityofasemiconductorbychangingtheelectricfieldthroughthechannel.Thecurrentpassingthroughitchangeswiththestrengthoftheelectricfield.Ithastwotypes:junctiontypeandsurfacetype.TheformerisbasedonthePNjunction,andthelattercontrolsthecurrentinthechannelwiththesurfaceelectricfield.

Theelectricfieldoftheinsulatinglayeriscontrolledbyanappliedvoltagetochangethesurfacefieldeffectofthechannelconductanceinthesemiconductor,soitisalsocalledaninsulatedgatefieldeffecttransistor.

Dependingonthematerialusedfortheinsulatinglayer,therearevarioustypesofIGFETs.

Atpresent,themostwidelyusedmetal-oxide-semiconductorfieldeffecttransistor(MOSFET)orMOStubeforshort.SchematicdiagramofpowerMOSFETunitstructureElectricalgraphicsymbolsforMOSFETs8.4PowerSemiconductorDevices-MOSFET518.4PowerSemiconductorDevices-MOSFET

Commonemittercircuit,outputcharacteristicsandtransfercharacteristicsofn-channelenhancement-modeP-MOSFETa)b)c)52

Commonemittercircuit,outputcharacteristicsandtransfercharacteristicsofn-channelenhancement-modeP-MOSFET8.4PowerSemiconductorDevices-MOSFET538.4PowerSemiconductorDevices-MOSFET

548.4PowerSemiconductorDevices-IGBTSchematicdiagram,symbolandequivalentcircuitofIGBT

558.4PowerSemiconductorDevices-IGBTThevolt-amperecharacteristicsandshort-circuitcharacteristicsofIGBTs

568.4PowerSemiconductorDevicesThedevelopmentofsemiconductormaterialscanbedividedintothefollowingstages:1)SiandGerepresentthefirstgenerationofsemiconductormaterials.2)GaAs(galliumarsenide),AlAs,andsimilarmaterialsdevelopedinthe1960sareconsideredthesecondgenerationofsemiconductormaterials.3)Inthepasttwodecades,thethirdgenerationofwidebandgapsemiconductormaterials,primarilySiCandGaN,hasgraduallyemerged.Thebandgapwidthofsiliconcarbide(SiC)isaboutthreetimesthatofsilicon(Si)material,givingSiCsignificantadvantagesoverSiintermsofvoltageresistanceandhigh-temperaturetolerance.Additionally,SiCdevicesexhibitmuchlowerleakagecurrentscomparedtoSidevices.Consequently,SiCdevicescanoperateinharshenvironmentssuchashightemperaturesandhighradiation.Table8-4PhysicalPropertiesofMajorPowerSemiconductorMaterials578.5IntegratedTechnologiesforAutomotiveMotorControllersThecompositionofthevehiclemotorcontrollerincludeshardwareandsoftware.Thehardwaremainlyincludesthemainpartssuchaspowercircuit,controlcircuitandstructuralheatdissipation.Thehardwaremainlyincludesthemainpartssuchaspowercircuit,controlcircuitandstructuralheatdissipation.

ThesoftwareincludesthesoftwareofthecontrolcircuitMCUandthesoftwareoftheprogrammablelogicdeviceintheprotectioncircuit.

Thepowercircuitmainlyincludespowermodules,capacitors,powerbusbars,etc.Exampleofcompositionofvehiclemotorcontroller58Audi-EtronMotorController59Thedemandcharacteristicsforautomotivepowermodulescanbesummarizedasfollows:1)WideTemperatureCharacteristics:Oneofthemostimportantandchallengingtechnicalrequirementsforpowermodulesinautomotiveapplicationsistheabilitytooperatenormallyatambienttemperaturesupto105°Cwithoutdegradingperformanceorreducingthelifespanofthemodule.2)ComplexOperatingConditions:Unlikeindustrialapplicationsinvolvingmotordrives,theoperatingconditionsforelectricvehiclesaremorecomplex.Forexample,inurbandrivingconditions,thevehiclefrequentlytransitionsbetweenacceleration,deceleration,andcruisingstates.3)HighReliabilityRequirements:Automotivepowermodulesmustmatchthelifespanofthevehicle,placinghigherdemandsonthedurabilityoftheIGBT.Typically,theoperationallifespanofapowermoduleis15yearsormore.Themainfactorsinfluencingpowermodulefailureincludepowercycling,thermalcycling,andvibration.Theselectionofpowermodulesforautomotiveelectricdrivesystemsmainlyconsidersthefollowingaspects:1)RatedVoltageandRatedCurrent:FormostA0-classandhighernewenergyvehicles,exceptforthosewithminimalhybridization,theratedvoltageofthepowerbatterypackisgenerallyaround300V.Duringbrakingorcharging,thebatteryvoltagemayriseabove400V.2)SwitchingFrequencyandSwitchingLoss:Increasingtheswitchingfrequencycanimprovethepowerdensityofthemotorcontroller,reducethesizeofthefilter,andminimizeoreliminatethesnubbercircuit,therebyreducingtheoverallsizeandweightofthecontroller.Additionally,itcangenerateelectromagneticinterference(EMC)noise.3)DynamicCharacteristicsandDeviceProtection:Theswitchingdevicesshouldbecapableofwithstandinghighvoltage/currentchangerates.Thedrivingpowerofthedeviceshouldbeverysmall,whichrequiresthedevicetohaveaverylowinputcapacitanceandveryhighinputimpedance(severalMΩormore).4)Cost:Thepriceofpowermodulescanaccountfor30-40%ofthetotalcostoftheinverter.Therefore,itisessentialtochoosedeviceswithahighperformance-to-priceratiowheneverpossible.8.5IntegratedTechnologiesforAutomotiveMotorControllers60DrivingCircuit61TheFunctionsofDrivingCircuitThefunctionsofdrivingcircuit:poweramplification,isolation,andwaveformadjustment628.5IntegratedTechnologiesforAutomotiveMotorControllersSchematicdiagramofatypicalelectricalisolationmethodTheIGBTdrivecircuitistheinterfacebetweenthelow-voltagecontrolcircuitandthehigh-voltagemaincircuit,andmainlyplaystheroleofdrivingpoweramplificationandprotectingpowerdevices.IthasanimportantinfluenceontheswitchingcharacteristicsoftheIGBT,includingswitchingspeed,switchinglosses,peaksandoscillationsofthewaveform,etc.Thedrivecircuitisanimportantlinkconnectingthecontrolcircuitandthepowercircuit,andshouldplaytheroleofhighandlowvoltageelectricalisolation.Atpresent,mainstreamdrivecircuitscanbedividedintothreecategoriesaccordingtoisolationmethods:opticalisolation,magneticisolation,andcapacitiveisolation.1)

Optocouplerisolationdriver:Theopto-isolateddriverusuallyusesanoptocouplertoachieveelectricalisolation.Sincetheoptocouplerisolationcanonlytransmitsignalsinonedirection,thehigh-frequencyinterferencesignalonthesecondarysidewillnotaffecttheprimaryside,soithastheadvantagesofstronganti-interferenceabilityandstableoperation.

2)

Magneticallyisolateddrive:Themagneticisolationdriveadoptstheisolationmethodofthepulsetransformer,andthesignalandenergyaretransmittedthroughthemagneticfield.

3)

Capacitiveisolateddrive:Capacitiveisolationdrivesusecapacitorsforisolationanduseelectricfieldstotransmitsignals.。638.5IntegratedTechnologiesforAutomotiveMotorControllersThecommonlyusedautomotivefiltercapacitorsaremainlydividedintotwocategories:electrolyticcapacitorsandfilmcapacitors.Tofurtherreducethesizeandweightofinvertersandmeettherequirementsofwidevoltagerangeandhigh-powerapplications,acompact,low-loss,cost-effectiveDC-Linkcapacitorisneeded.Comparedtoelectrolyticcapacitors,filmcapacitorshavethefollowingadvantages:ExcellentTemperatureCharacteristics:DC-Linkfilmcapacitorsusehigh-temperaturepolypropylenefilm,offeringgoodtemperaturestability.Incontrast,thecapacitanceofelectrolyticcapacitorsdropssharplyatlowtemperatures,affectingtheirapplicationincoldenvironments.AbilitytoWithstandReverseVoltage:Ifareversevoltageexceedingthespecifiedvalueisappliedtoanelectrolyticcapacitor,achemicalreactionoccursinsidethecapacitor,potentiallycausinganexplosionorelectrolyteleakageasinternalpressureisreleased.Filmcapacitors,beingnon-polar,canwithstandbidirectionalvoltagesurges,offeringhigherreliability.StrongPulseVoltageResistance:Filmcapacitorshavebetterimpactvoltageresistancecomparedtoelectrolyticcapacitors.DryDesign,NoElectrolyteLeakage:Filmcapacitorsdonothaveissueswithelectrolyteleakageandacidpollution.LowESRandHighRippleCurrentCapability:Filmcapacitorstypicallyhavelowerequivalentseriesresistance(ESR),witharipplecurrentcapabilityofupto200mA/pF.Incontrast,electrolyticcapacitorshavemuchlowerripplecurrentcapability.LowESL:Thelowinductancedesignofinvertersrequiresthemaincomponent,theDC-Linkcapacitor,tohaveextremelylowequivalentseriesinductance(ESL).High-performanceDC-Linkfilmcapacitorsintegratethebusbarintothecapacitormodule,reducingself-inductanceandminimizingoscillationeffectsatoperatingswitchingfrequencies.LongServiceLife:Filmcapacitorshavealongerservicelifeunderratedvoltageandratedoperatingtemperatureconditions.648.5IntegratedTechnologiesforAutomotiveMotorControllers

MotorControllerCoolingSystemThermalResistanceCircuitEquivalentThevehiclemotorcontrollerismainlyliquid-cooled,andtheheatingelementiscooledmainlybyconductionheatdissipation.

Thepowermoduleofthevehiclemotorcontrolleradoptsacompactarrangement,andthepowermodulecanbeapproximatelyconsideredasasingleheatsource;atthesametime,thecoolingsystemadoptsanoptimizeddesignscheme,sothattheheatofthecoolingsystemcanbedissipatedintime,soitcanbeconsideredasaradiatorforthemotorcontroller.65

Halltypecurrentdetectionprinciple8.5IntegratedTechnologiesforAutomotiveMotorControllers668.5IntegratedTechnologiesforAutomotiveMotorControllers

Fig.8-26CurrentDetectionPrincipleBasedonSamplingResistor678.5IntegratedTechnologiesforAutomotiveMotorControllersSchematicdiagramofMCUworkingmodeconversionThefollowingexamplesillustratetypicalsoftwarefunctionmodules.(1)

MotorControlStateMachineDesign.

Theintroductionofstatemachine(StateMachine)isverynecessaryforconcurrenttaskapplications.Itcanensurethattheembeddedcontrollermakesareasonable/timelyresponsetoexternalinputbydividingdifferentworkingmodes.

Thestateofthemotorcanbedividedinto:Initialization、Standby、HVActive、SpdqCtl、TrqCtl、DisCharge、Failure.(2)

Motortorquecontrolfunction.

TorquecontrolmeansthattheMCUreceivesthetorquecontrolrequestsentbythehostcomputer,andoutputsthetorquethatmatchestheworkingconditionswhileconsideringtheworkingconditionsofthemotorsystem(voltage,speed,temperature).Thetorquecontrolandfunctionrealizationofthedrivemotormainlyincludethemaximumtorquetocurrentratio(MTPA)controlinthelow-speedconstanttorquecontrolarea,theconstantpowerfieldweakeningcontrolinthehigh-speedarea,thespeedcontrol,andthevoltagecontrol.(3)

Communicationmodulesandotherfunctions.

TheelectronicstructureofmodernautomobilesismainlytoconnectdifferentECUsthroughtheCANbuscommunicationsystemtoformadistributedcontrolsystem.68PMSM

V.S.InductionMotorPMSM

orientationInductionMotororientation

SelectingthearbitrarymagneticfieldsynchronousMTcoordinatesystemtotherotorDQcoordinatesystem.

698.6RotorMagneticFieldPositionMeasurementandEstimationforACMotors8.6.1TypicalMotorPositionandSpeedMeasur

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論