2025屆山西省應(yīng)縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆山西省應(yīng)縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆山西省應(yīng)縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆山西省應(yīng)縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆山西省應(yīng)縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆山西省應(yīng)縣一中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知矩形,為平面外一點(diǎn),且平面,,分別為,上的點(diǎn),且,,,則()A. B.C.1 D.2.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點(diǎn),BE,DH的交點(diǎn)為G,則的化簡結(jié)果為()A. B.C. D.3.已知函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)f(x)的圖象可能是()A. B.C. D.4.考試停課復(fù)習(xí)期間,小王同學(xué)計(jì)劃將一天中的7節(jié)課全部用來復(fù)習(xí)4門不同的考試科目,每門科目復(fù)習(xí)1或2節(jié)課,則不同的復(fù)習(xí)安排方法有()種A.360 B.630C.2520 D.151205.若在直線上,則直線的一個方向向量為()A. B.C. D.6.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.7.已知命題p:函數(shù)在(0,1)內(nèi)恰有一個零點(diǎn);命題q:函數(shù)在上是減函數(shù),若p且為真命題,則實(shí)數(shù)的取值范圍是A. B.2C.1<≤2 D.≤l或>28.已知函數(shù),則等于()A.0 B.2C. D.9.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點(diǎn),以PQR為底面作一個直三棱柱,使其另一個底面的三個頂點(diǎn)也都在正方體的表面上,則這個直三棱柱的體積為()A. B.C. D.10.已知角為第二象限角,,則的值為()A. B.C. D.11.已知點(diǎn)是拋物線上的一點(diǎn),F是拋物線的焦點(diǎn),則點(diǎn)M到F的距離等于()A.6 B.5C.4 D.212.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則曲線在點(diǎn)處的切線的傾斜角是_______14.曲線在處的切線斜率為___________.15.若球的大圓的面積為,則該球的表面積為___________.16.從10名大學(xué)畢業(yè)生中選3個人擔(dān)任村主任助理,則甲、乙至少有1人入選,而丙沒有入選不同選法的種數(shù)為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的一個頂點(diǎn)為,離心率為,直線與橢圓交于不同的兩點(diǎn)M,N(1)求橢圓的標(biāo)準(zhǔn)方程;(2)當(dāng)?shù)拿娣e為時,求的值18.(12分)如圖,在長方體中,底面是邊長為1的正方形,側(cè)棱長為2,且動點(diǎn)P在線段AC上運(yùn)動(1)若Q為的中點(diǎn),求點(diǎn)Q到平面的距離;(2)設(shè)直線與平面所成角為,求的取值范圍19.(12分)如圖,四棱錐的底面是正方形,PD⊥底面ABCD,M為BC的中點(diǎn),(1)證明:;(2)設(shè)平面平面,求l與平面MND所成角的正弦值20.(12分)《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬中,側(cè)棱底面,且,過棱的中點(diǎn),作交于點(diǎn),連接(1)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;(2)記陽馬的體積為,四面體的體積為,求的值;(3)若面與面所成二面角的大小為,求的值21.(12分)已知:圓是的外接圓,邊所在直線的方程為,中線所在直線的方程為,直線與圓相切于點(diǎn).(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)求圓的方程.22.(10分)求證:(1)是上的偶函數(shù);(2)是上的奇函數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由,,得,然后利用向量的加減法法則把向量用向量表示出來,可求出的值,從而可得答案【詳解】解:因?yàn)?,,所以所?因?yàn)?,所以,所以,故選:B2、D【解析】依題意可得為的重心,由三角形重心的性質(zhì)可知,由中位線定理可知,再利用向量的加法運(yùn)算法則即可求出結(jié)果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點(diǎn),,,故選:D3、D【解析】根據(jù)導(dǎo)函數(shù)正負(fù)與原函數(shù)單調(diào)性關(guān)系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應(yīng)到導(dǎo)函數(shù)先負(fù)再正,再負(fù)再正,且原函數(shù)在處與軸相切,故可知,導(dǎo)函數(shù)圖象為D故選:D4、C【解析】,先安排復(fù)習(xí)節(jié)的科目,然后安排其余科目,由此計(jì)算出不同的復(fù)習(xí)安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復(fù)習(xí)安排方法有種.故選:C5、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D6、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.7、C【解析】命題p為真時:;命題q為真時:,因?yàn)閜且為真命題,所以命題p為真,命題q為假,即,選C考點(diǎn):命題真假8、D【解析】先通過誘導(dǎo)公式將函數(shù)化簡,進(jìn)而求出導(dǎo)函數(shù),然后算出答案.【詳解】由題意,,故選:D.9、C【解析】分別取的中點(diǎn),連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點(diǎn),連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因?yàn)檎襟w的棱長為1,所以,所以直三棱柱的體積為,故選:C10、C【解析】由同角三角函數(shù)關(guān)系可得,進(jìn)而直接利用兩角和的余弦展開求解即可.【詳解】∵,是第二象限角,∴,∴.故選:C.11、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.12、B【解析】求出不等式的等價形式,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可【詳解】由得或,由得,因?yàn)榛蛲撇怀?,但能推出或成立,所以“”是“”的必要不充分條件,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導(dǎo)數(shù)的定義,化簡整理,可得,根據(jù)導(dǎo)數(shù)的幾何意義,即可求得答案.【詳解】因?yàn)?,所以,則曲線在點(diǎn)處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:14、##【解析】首先求得的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率.【詳解】因?yàn)楹瘮?shù)的導(dǎo)數(shù)為,所以可得在處的切線斜率,故答案為:15、【解析】設(shè)球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設(shè)球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.16、49【解析】丙沒有入選,相當(dāng)于從9個人中選3人,分為兩種情況:甲乙兩人只有一人入選;甲乙兩人都入選,分別求出每種情況的選法數(shù),再利用分類加法計(jì)數(shù)原理即可得解.【詳解】丙沒有入選,把丙去掉,相當(dāng)于從9個人中選3人,甲、乙至少有1人入選,分為兩種情況:甲乙兩人只有一人入選;甲乙兩人都入選.甲乙兩人只有一人入選,選法有種;甲乙兩人都入選,選法有種.所以,滿足題意的選法共有種.故答案為:49.【點(diǎn)睛】本題考查組合的應(yīng)用,其中涉及到分類加法計(jì)數(shù)原理,屬于中檔題.一些常見類型的排列組合問題的解法:(1)特殊元素、特殊位置優(yōu)先法元素優(yōu)先法:先考慮有限制條件的元素的要求,再考慮其他元素;位置優(yōu)先法:先考慮有限制條件的位置的要求,再考慮其他位置;(2)分類分步法:對于較復(fù)雜的排列組合問題,常需要分類討論或分步計(jì)算,一定要做到分類明確,層次清楚,不重不漏;(3)間接法(排除法),從總體中排除不符合條件的方法數(shù),這是一種間接解題的方法;(4)捆綁法:某些元素必相鄰的排列,可以先將相鄰的元素“捆成一個”元素,與其它元素進(jìn)行排列,然后再給那“一捆元素”內(nèi)部排列;(5)插空法:某些元素不相鄰的排列,可以先排其它元素,再讓不相鄰的元素插空;(6)去序法或倍縮法;(7)插板法:個相同元素,分成組,每組至少一個的分組問題.把個元素排成一排,從個空中選個空,各插一個隔板,有;(8)分組、分配法:有等分、不等分、部分等分之別.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由橢圓的一個頂點(diǎn)為,得到,再由橢圓的離心率為,求得,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程;(2)由橢圓的對稱性得到,聯(lián)立方程組求得,根據(jù)的面積為,列出方程,即可求解.【小問1詳解】解:由題意,橢圓的一個頂點(diǎn)為,可得,又由橢圓的離心率為,可得,所以,則,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:設(shè),且根據(jù)橢圓的對稱性得,聯(lián)立方程組,整理得,解得,因?yàn)榈拿娣e為,可得,解得.18、(1)1(2)【解析】(1)以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,利用空間向量法求出平面的法向量,結(jié)合點(diǎn)到平面的距離的向量求法計(jì)算即可;(2)設(shè)點(diǎn),,進(jìn)而得出的坐標(biāo),利用向量的數(shù)量積即可列出線面角正弦值的表達(dá)式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】由題意,分別以AB,AD,為x,y,z軸正向建立直角坐標(biāo)系,于是,,,,,設(shè)平面法向量所以,解得,,令得,,設(shè)點(diǎn)Q到平面的距離為d,【小問2詳解】由(1)可知,平面的法向量,由P點(diǎn)在線段AC上運(yùn)動可設(shè)點(diǎn),于是,,所以,的取值范圍是19、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得.(2)利用向量法求得與平面所成角的正弦值.【小問1詳解】∵PD⊥平面ABCD,,以點(diǎn)D為坐標(biāo)原點(diǎn),DA,DC,DP所在直線分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系Dxyz,則D(0,0,0),N(,0,),P(0,0,2),M(1,2,0)所以,,所以,所以.【小問2詳解】由正方形ABCD得,CD//AB,∵平面PAB,平面PAB,∴CD//平面PAB;又∵平面PCD,平面平面∴CD//l;于是CD與平面MND所成的角即為l與平面MND所成的角由(1)知,設(shè)平面MND的一個法向量,則,取,則,于是是平面MND的一個法向量,因?yàn)?,設(shè)l與平面MND所成角為,則20、(1)證明見解析,是鱉臑,四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直線與直線,直線與平面的垂直的轉(zhuǎn)化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,確定直角即可;(2)PD是陽馬P?ABCD的高,DE是鱉臑D?BCE的高,BC⊥CE,,由此能求出的值(3)根據(jù)公理2得出DG是平面DEF與平面ACBD的交線.利用直線與平面的垂直判斷出DG⊥DF,DG⊥DB,根據(jù)平面角的定義得出∠BDF是面DEF與面ABCD所成二面角的平面角,轉(zhuǎn)化到直角三角形求解即可【小問1詳解】因?yàn)镻D⊥底面ABCD,所以PD⊥BC,由底面ABCD為長方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE?平面PDC,所以BC⊥DE又因?yàn)镻D=CD,點(diǎn)E是PC的中點(diǎn),所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,即四面體BDEF是一個鱉臑,其四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB;【小問2詳解】由已知,PD是陽馬P?ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,點(diǎn)E是PC的中點(diǎn),∴,∴【小問3詳解】如圖所示,在面BPC內(nèi),延長BC與FE交于點(diǎn)G,則DG是平面DEF與平面ABCD的交線由(1)知,PB⊥平面DEF,所以PB⊥DG又因?yàn)镻D⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF與面ABCD所成二面角的平面角,設(shè)PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,則,解得所以故當(dāng)面DEF與面ABCD所成二面角的大小為時,21、(1)A(1,7),(2)【解析】(1)與的的交點(diǎn)為點(diǎn)D,與的的交點(diǎn)為點(diǎn)A,聯(lián)立解方程即可得出結(jié)果.(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論