遼寧省大連市一零三中學2025屆高三數(shù)學第一學期期末聯(lián)考試題含解析_第1頁
遼寧省大連市一零三中學2025屆高三數(shù)學第一學期期末聯(lián)考試題含解析_第2頁
遼寧省大連市一零三中學2025屆高三數(shù)學第一學期期末聯(lián)考試題含解析_第3頁
遼寧省大連市一零三中學2025屆高三數(shù)學第一學期期末聯(lián)考試題含解析_第4頁
遼寧省大連市一零三中學2025屆高三數(shù)學第一學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省大連市一零三中學2025屆高三數(shù)學第一學期期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.2.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.3.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.4.已知實數(shù),則下列說法正確的是()A. B.C. D.5.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.6.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.7.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據(jù)說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.8.已知平面向量,,,則實數(shù)x的值等于()A.6 B.1 C. D.9.設全集,集合,.則集合等于()A. B. C. D.10.在平面直角坐標系中,已知角的頂點與原點重合,始邊與軸的非負半軸重合,終邊落在直線上,則()A. B. C. D.11.已知復數(shù),滿足,則()A.1 B. C. D.512.設向量,滿足,,,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則14.在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.15.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.16.已知是定義在上的偶函數(shù),其導函數(shù)為.若時,,則不等式的解集是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且點在函數(shù)的圖像上;(1)求數(shù)列的通項公式;(2)設數(shù)列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;18.(12分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設為曲線上任意一點,求的取值范圍.19.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大小;(2)若的面積為,,求.20.(12分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.21.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前項和;(3)設為數(shù)列的前項和,若對于任意,有,求實數(shù)的值.22.(10分)設函數(shù).(1)當時,求不等式的解集;(2)當時,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關的新定義問題,其本質在于弄清計數(shù)原理,分類討論,分別求解.2、D【解析】

運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數(shù)的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.3、D【解析】

利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質,求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.4、C【解析】

利用不等式性質可判斷,利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調性判斷.【詳解】解:對于實數(shù),,不成立對于不成立.對于.利用對數(shù)函數(shù)單調遞增性質,即可得出.對于指數(shù)函數(shù)單調遞減性質,因此不成立.故選:.【點睛】利用不等式性質比較大?。⒁獠坏仁叫再|成立的前提條件.解決此類問題除根據(jù)不等式的性質求解外,還經(jīng)常采用特殊值驗證的方法.5、B【解析】

先設直線與圓相切于點,根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于??碱}型.6、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉化求解的位置,推出結果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關鍵是作出軸截面圖形,屬中檔題.7、C【解析】

設球的半徑為R,根據(jù)組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎題.8、A【解析】

根據(jù)向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.9、A【解析】

先算出集合,再與集合B求交集即可.【詳解】因為或.所以,又因為.所以.故選:A.【點睛】本題考查集合間的基本運算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.10、C【解析】

利用誘導公式以及二倍角公式,將化簡為關于的形式,結合終邊所在的直線可知的值,從而可求的值.【詳解】因為,且,所以.故選:C.【點睛】本題考查三角函數(shù)中的誘導公式以及三角恒等變換中的二倍角公式,屬于給角求值類型的問題,難度一般.求解值的兩種方法:(1)分別求解出的值,再求出結果;(2)將變形為,利用的值求出結果.11、A【解析】

首先根據(jù)復數(shù)代數(shù)形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數(shù)求模問題,考查復數(shù)的除法運算,屬于基礎題.12、B【解析】

由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關鍵,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】

先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【點睛】本題主要考查線性規(guī)劃的基本應用,利用數(shù)形結合,結合目標函數(shù)的幾何意義是解決此類問題的基本方法.14、2【解析】

將已知數(shù)列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.15、【解析】

利用等差數(shù)列的通項公式以及等比中項的性質,化簡求出公差與的關系,然后轉化求解的值.【詳解】設等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應用,考查計算能力,屬于基礎題.16、【解析】

構造,先利用定義判斷的奇偶性,再利用導數(shù)判斷其單調性,轉化為,結合奇偶性,單調性求解不等式即可.【詳解】令,則是上的偶函數(shù),,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點睛】本題考查了利用函數(shù)的奇偶性、單調性解不等式,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)當n為偶數(shù)時,;當n為奇數(shù)時,.(3)【解析】

(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數(shù)或偶數(shù)時的通項公式.也可利用數(shù)學歸納法,先猜想出通項公式,再用數(shù)學歸納法證明.(3)分類討論,當n為奇數(shù)或偶數(shù)時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當時,,當時,也滿足上式.所以.(2)解法一:由(1)可知,即.當時,,①當時,,所以,②當時,,③當時,,所以,④……當時,n為偶數(shù)當時,n為偶數(shù)所以以上個式子相加,得.又,所以當n為偶數(shù)時,.同理,當n為奇數(shù)時,,所以,當n為奇數(shù)時,.解法二:猜測:當n為奇數(shù)時,.猜測:當n為偶數(shù)時,.以下用數(shù)學歸納法證明:,命題成立;假設當時,命題成立;當n為奇數(shù)時,,當時,n為偶數(shù),由得故,時,命題也成立.綜上可知,當n為奇數(shù)時同理,當n為偶數(shù)時,命題仍成立.(3)由(2)可知.①當n為偶數(shù)時,,所以隨n的增大而減小從而當n為偶數(shù)時,的最大值是.②當n為奇數(shù)時,,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對于任意的,不等式恒成立,只需,故實數(shù)的取值范圍是.【點睛】本題考查了累加法求數(shù)列通項公式的應用,分類討論奇偶項的通項公式及求和方法,數(shù)學歸納法證明數(shù)列的應用,數(shù)列的單調性及參數(shù)的取值范圍,屬于難題.18、(1)或;(2).【解析】

(1)將曲線的極坐標方程化為直角坐標方程,在直角坐標條件下求出曲線的圓心坐標和半徑,將直線的參數(shù)方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數(shù)方程形式,代入由三角公式化簡可求其取值范圍.【詳解】(1)曲線C的極坐標方程是化為直角坐標方程為:直線的直角坐標方程為:圓心到直線l的距離(弦心距)圓心到直線的距離為:或(2)曲線的方程可化為,其參數(shù)方程為:為曲線上任意一點,的取值范圍是19、(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運算可得,利用正弦定理可得,結合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.20、(1);(2)【解析】

(1)當時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當時,由,可得,令,則只需,當時,;當時,;當時,;故當時,取得最小值,即的最大值為.(2)依題意,當時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.【點睛】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應用,著重考查了轉化思想,以及推理與計算能力.21、(1),(2)(3)【解析】

(1)假設公差,公比,根據(jù)等差數(shù)列和等比數(shù)列的通項公式,化簡式子,可得,,然后利用公式法,可得結果.(2)根據(jù)(1)的結論,利用錯位相減法求和,可得結果.(3)計算出,代值計算并化簡,可得結果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點睛】本題主要考查等差數(shù)列和等比數(shù)列的綜合應用,以及利用錯位相減法求和,屬基礎

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論