版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省梅州市五華縣2025屆數(shù)學(xué)高二上期末監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.2.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.2 B.4C.6 D.83.已知點(diǎn),,直線:與線段相交,則實(shí)數(shù)的取值范圍是()A.或 B.或C. D.4.中國(guó)農(nóng)歷的二十四節(jié)氣是中華民族的智慧與傳統(tǒng)文化的結(jié)晶,二十四節(jié)氣歌是以春、夏、秋、冬開(kāi)始的四句詩(shī).在國(guó)際氣象界,二十四節(jié)氣被譽(yù)為“中國(guó)的第五大發(fā)明”.2016年11月30日,二十四節(jié)氣被正式列入聯(lián)合國(guó)教科文組織人類非物質(zhì)文化遺產(chǎn)代表作名錄.某小學(xué)三年級(jí)共有學(xué)生600名,隨機(jī)抽查100名學(xué)生并提問(wèn)二十四節(jié)氣歌,只能說(shuō)出一句的有45人,能說(shuō)出兩句及以上的有38人,據(jù)此估計(jì)該校三年級(jí)的600名學(xué)生中,對(duì)二十四節(jié)氣歌一句也說(shuō)不出的有()A.17人 B.83人C.102人 D.115人5.直線(t為參數(shù))被圓所截得的弦長(zhǎng)為()A. B.C. D.6.已知在四棱錐中,平面,底面是邊長(zhǎng)為4的正方形,,E為棱的中點(diǎn),則直線與平面所成角的正弦值為()A. B.C. D.7.已知點(diǎn)、為橢圓的左、右焦點(diǎn),若點(diǎn)為橢圓上一動(dòng)點(diǎn),則使得的點(diǎn)的個(gè)數(shù)為()A. B.C. D.不能確定8.已知直線l:,則下列結(jié)論正確的是()A.直線l的傾斜角是B.直線l在x軸上的截距為1C.若直線m:,則D.過(guò)與直線l平行的直線方程是9.劉老師在課堂中與學(xué)生探究某個(gè)圓時(shí),有四位同學(xué)分別給出了一個(gè)結(jié)論.甲:該圓經(jīng)過(guò)點(diǎn).乙:該圓半徑為.丙:該圓的圓心為.?。涸搱A經(jīng)過(guò)點(diǎn),如果只有一位同學(xué)的結(jié)論是錯(cuò)誤的,那么這位同學(xué)是()A.甲 B.乙C.丙 D.丁10.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個(gè)窗花的圖案,以正六邊形各頂點(diǎn)為圓心、邊長(zhǎng)為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點(diǎn),則此點(diǎn)取自于陰影部分的概率為()A. B.C. D.11.己知F為拋物線的焦點(diǎn),過(guò)F作兩條互相垂直的直線,,直線與C交于A、B兩點(diǎn),直線與C交于D、E兩點(diǎn),則的最小值為()A.24 B.22C.20 D.1612.函數(shù)的單調(diào)遞減區(qū)間為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍為_(kāi)_______.14.點(diǎn)P是棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的底面A1B1C1D1上一點(diǎn),則的取值范圍是__.15.已知橢圓的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)的直線與橢圓交于A,B兩點(diǎn),線段AB的長(zhǎng)為5,若,那么△的周長(zhǎng)是______.16.橢圓與雙曲線有公共焦點(diǎn),設(shè)橢圓與雙曲線在第一象限內(nèi)交于點(diǎn),橢圓與雙曲線的離心率分別為為坐標(biāo)原點(diǎn),,則的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,幾何體中,平面,,,,E是中點(diǎn),二面角的平面角為.(1)求證:平面;(2)求直線與平面所成角的正弦值.18.(12分)新型冠狀病毒的傳染主要是人與人之間進(jìn)行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進(jìn)入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時(shí)間.潛伏期越長(zhǎng),感染到他人的可能性越高.現(xiàn)對(duì)個(gè)病例的潛伏期(單位:天)進(jìn)行調(diào)查,統(tǒng)計(jì)發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認(rèn)為超過(guò)天的潛伏期屬于“長(zhǎng)潛伏期”,按照年齡統(tǒng)計(jì)樣本,得到下面的列聯(lián)表:年齡/人數(shù)長(zhǎng)期潛伏非長(zhǎng)期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認(rèn)為“長(zhǎng)期潛伏”與年齡有關(guān);(2)假設(shè)潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對(duì)入境旅客一律要求隔離天,請(qǐng)用概率知識(shí)解釋其合理性;(ii)以題目中的樣本頻率估計(jì)概率,設(shè)個(gè)病例中恰有個(gè)屬于“長(zhǎng)期潛伏”的概率是,當(dāng)為何值時(shí),取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.19.(12分)證明:是無(wú)理數(shù).(我們知道任意一個(gè)有理數(shù)都可以寫(xiě)成形如(m,n互質(zhì),)的形式)20.(12分)從①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中并作答:已知等差數(shù)列公差大于零,且前n項(xiàng)和為,,______,,求數(shù)列的前n項(xiàng)和.(注:如果選擇多個(gè)條件分別解答,那么按照第一個(gè)解答計(jì)分)21.(12分)已知:對(duì)任意,都有;:存在,使得(1)若“且”為真,求實(shí)數(shù)的取值范圍;(2)若“或”為真,“且”為假,求實(shí)數(shù)的取值范圍22.(10分)已知圓,直線(1)求證:直線與圓恒有兩個(gè)交點(diǎn);(2)設(shè)直線與圓的兩個(gè)交點(diǎn)為、,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【詳解】由題意,橢圓的焦點(diǎn)在軸上,可設(shè)橢圓的方程為,因?yàn)闄E圓C的離心率為,可得,又由,即,解得,又因?yàn)闄E圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.2、B【解析】根據(jù)等差數(shù)列前n項(xiàng)和公式,結(jié)合等差數(shù)列下標(biāo)的性質(zhì)、等差數(shù)列通項(xiàng)公式進(jìn)行求解即可.【詳解】設(shè)等差數(shù)列的公差為,,,故選:B3、A【解析】由可求出直線過(guò)定點(diǎn),作出圖象,求出和,數(shù)形結(jié)合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過(guò)定點(diǎn),由可得,作出圖象如圖所示:,,若直線與線段相交,則或,解得或,所以實(shí)數(shù)的取值范圍是或,故選:A.4、C【解析】根據(jù)頻率計(jì)算出正確答案.【詳解】一句也說(shuō)不出的學(xué)生頻率為,所以估計(jì)名學(xué)生中,一句也說(shuō)不出的有人.故選:C5、C【解析】求得直線普通方程以及圓的直角坐標(biāo)方程,利用弦長(zhǎng)公式即可求得結(jié)果.【詳解】因?yàn)橹本€的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長(zhǎng)為.故選:C.6、B【解析】建立空間直角坐標(biāo)系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長(zhǎng)為4的正方形,則有,而,故平面,以A為原點(diǎn),分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系如圖:則,,,設(shè)直線與平面所成角為,又由題可知為平面的一個(gè)法向量,則故選:B7、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時(shí)點(diǎn)位于橢圓短軸的頂點(diǎn).因此,滿足條件的點(diǎn)的個(gè)數(shù)為.故選:B.8、D【解析】A.將直線方程的一般式化為斜截式可得;B.令y=0可得;C.求出直線m斜率即可判斷;D.設(shè)要求直線的方程為,將代入即可.【詳解】根據(jù)題意,依次分析選項(xiàng):對(duì)于A,直線l:,即,其斜率,則傾斜角是,A錯(cuò)誤;對(duì)于B,直線l:,令y=0,可得,l在x軸上的截距為,B錯(cuò)誤;對(duì)于C,直線m:,其斜率,,故直線m與直線l不垂直,C錯(cuò)誤;對(duì)于D,設(shè)要求直線的方程為,將代入,可得t=0,即要求直線為,D正確;故選:D9、D【解析】分別假設(shè)甲、乙、丙、丁是錯(cuò)誤的,看能否推出矛盾,進(jìn)而推導(dǎo)出答案.【詳解】假設(shè)甲的結(jié)論錯(cuò)誤,根據(jù)丙和丁的結(jié)論,該圓的半徑為6,與乙的結(jié)論矛盾;假設(shè)乙的結(jié)論錯(cuò)誤,圓心到點(diǎn)的距離與圓心到點(diǎn)的距離不相等,不成立;假設(shè)丙的結(jié)論錯(cuò)誤﹐點(diǎn)到點(diǎn)的距離大于,不成立;假設(shè)丁的結(jié)論錯(cuò)誤,圓心到點(diǎn)的距離等于,成立.故選:D10、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計(jì)算公式,計(jì)算出所求的概率.【詳解】設(shè)正六邊形的邊長(zhǎng)為,則其面積為.陰影部分面積為,故所求概率為.故選:D11、A【解析】由拋物線的性質(zhì):過(guò)焦點(diǎn)的弦長(zhǎng)公式計(jì)算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因?yàn)?,所以,所以,故選:A.12、A【解析】先求定義域,再由導(dǎo)數(shù)小于零即可求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】由得,所以函數(shù)的定義域?yàn)?,又,因?yàn)?,所以由得,解得,所以函?shù)的單調(diào)遞減區(qū)間為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得有兩個(gè)不同正根,利用分離參數(shù)法得到.令,,只需和有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)研究的單調(diào)性與極值,數(shù)形結(jié)合即得.【詳解】∵的定義域?yàn)?,,要使函?shù)有兩個(gè)極值點(diǎn),只需有兩個(gè)不同正根,并且在的兩側(cè)的單調(diào)性相反,在的兩側(cè)的單調(diào)性相反,由得,,令,,要使函數(shù)有兩個(gè)極值點(diǎn),只需和有兩個(gè)交點(diǎn),∵,令得:0<x<1;令得:x>1;所以在上單調(diào)遞增,在上單調(diào)遞減,當(dāng)時(shí),;當(dāng)時(shí),;作出和的圖像如圖,所以,即,即實(shí)數(shù)a的取值范圍為.故答案為:14、[﹣,0]【解析】建立空間直角坐標(biāo)系,設(shè)出點(diǎn)P的坐標(biāo)為(x,y,z),則由題意可得0≤x≤1,0≤y≤1,z=1,計(jì)算?x2﹣x,利用二次函數(shù)的性質(zhì)求得它的值域即可【詳解】解:以點(diǎn)D為原點(diǎn),以DA所在的直線為x軸,以DC所在的直線為y軸,以DD1所在的直線為z軸,建立空間直角坐標(biāo)系,如圖所示;則點(diǎn)A(1,0,0),C1(0,1,1),設(shè)點(diǎn)P的坐標(biāo)為(x,y,z),由題意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴?x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函數(shù)的性質(zhì)可得,當(dāng)x=y(tǒng)時(shí),?取得最小值為;當(dāng)x=0或1,且y=0或1時(shí),?取得最大值為0,則?的取值范圍是[,0]故答案為:[,0]【點(diǎn)睛】本題主要考查了向量在幾何中的應(yīng)用與向量的數(shù)量積運(yùn)算問(wèn)題,是綜合性題目15、16【解析】利用橢圓的定義可知,又△的周長(zhǎng),即可求焦點(diǎn)三角形的周長(zhǎng).【詳解】由橢圓定義知:,所以△的周長(zhǎng)為.故答案為:16.16、【解析】根據(jù)橢圓和雙曲線得定義求得,再根據(jù),可得,從而有,求出的范圍,根據(jù),結(jié)合基本不等式即可得出答案.【詳解】解:設(shè),則有,所以,即,又因?yàn)?,所以,所以,即,則,由,得,所以,所以,則,由,得,因?yàn)椋?dāng)且僅當(dāng),即時(shí),取等號(hào),因?yàn)?,所以,所以,即,所以的取值范圍?故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,從而可證平面;(2)以為坐標(biāo)原點(diǎn),,,所在直線為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系,求平面的一個(gè)法向量與的方向向量,利用向量法可求直線與平面所成角的正弦值【小問(wèn)1詳解】證明:取中點(diǎn),又是中點(diǎn),,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中點(diǎn),,平面,,又,平面,平面.【小問(wèn)2詳解】解:以為坐標(biāo)原點(diǎn),,,所在直線為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系,則,0,,,1,,,0,,,1,,1,,,0,,,1,設(shè)平面的一個(gè)法向量為,,,則,令,則,,平面的一個(gè)法向量為,,,設(shè)直線與平面所成角為,則,直線與平面所成角的正弦值為18、(1)有;(2)(i)答案見(jiàn)解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對(duì)比下結(jié)論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個(gè)患者屬于“長(zhǎng)潛伏期”的概率是,進(jìn)而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認(rèn)為“長(zhǎng)期潛伏”與年齡有關(guān);(2)(ⅰ)若潛伏期,由,得知潛伏期超過(guò)天的概率很低,因此隔離天是合理的;(ⅱ)由于個(gè)病例中有個(gè)屬于長(zhǎng)潛伏期,若以樣本頻率估計(jì)概率,一個(gè)患者屬于“長(zhǎng)潛伏期”的概率是,于是,則,,當(dāng)時(shí),;當(dāng)時(shí),;∴,.故當(dāng)時(shí),取得最大值.【點(diǎn)睛】方法點(diǎn)睛:利用獨(dú)立重復(fù)試驗(yàn)概率公式可以簡(jiǎn)化求概率的過(guò)程,但需要注意檢查該概率模型是否滿足公式的三個(gè)條件:(1)在一次試驗(yàn)中某事件A發(fā)生的概率是一個(gè)常數(shù)p;(2)n次試驗(yàn)不僅是在完全相同的情況下進(jìn)行的重復(fù)試驗(yàn),而且各次試驗(yàn)的結(jié)果是相互獨(dú)立的;(3)該公式表示n次試驗(yàn)中事件A恰好發(fā)生了k次的概率19、詳見(jiàn)解析【解析】利用反證法,即可推得矛盾.【詳解】假設(shè)有理數(shù),則,則,為整數(shù),的尾數(shù)只能是0,1,4,5,6,9,的尾數(shù)只能是0,1,4,5,6,9,則的尾數(shù)是0,2,8,由得,尾數(shù)為0,則的尾數(shù)是0,而的尾數(shù)為0或5,這與為最簡(jiǎn)分?jǐn)?shù),的最大公約數(shù)是1,相矛盾,所以假設(shè)不正確,是無(wú)理數(shù).20、;【解析】將條件①②③轉(zhuǎn)化為的形式,列方程組,并求解,寫(xiě)出的通項(xiàng)公式,從而表示出,利用裂項(xiàng)相消法求和.【詳解】選①:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)?,,所以,所以,所以,所以選②:設(shè)等差數(shù)列首項(xiàng)為,公差為,因?yàn)椋?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度云南省高校教師資格證之高等教育法規(guī)過(guò)關(guān)檢測(cè)試卷A卷附答案
- 數(shù)據(jù)中心運(yùn)營(yíng)管理方案
- 2024年碳化硅磨塊項(xiàng)目投資申請(qǐng)報(bào)告代可行性研究報(bào)告
- 贛南師范大學(xué)《化工制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 航道疏浚勞務(wù)分包工程方案(技術(shù)方案)(兩套)
- 阜陽(yáng)師范大學(xué)《物流管理專業(yè)導(dǎo)論》2021-2022學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《編譯原理》2021-2022學(xué)年第一學(xué)期期末試卷
- 粵教版小學(xué)六年級(jí)上冊(cè)科學(xué)教案(全冊(cè))
- 福建師范大學(xué)協(xié)和學(xué)院《統(tǒng)計(jì)學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《中國(guó)地理》2021-2022學(xué)年第一學(xué)期期末試卷
- 特殊過(guò)程確認(rèn)記錄表
- 秦皇島市住宅工程常見(jiàn)質(zhì)量問(wèn)題防治
- 西泠印社版書(shū)法指導(dǎo)五年級(jí)下冊(cè)《左右結(jié)構(gòu)》(二)
- (word完整版)八年級(jí)下冊(cè)英語(yǔ)單詞表中文
- 建設(shè)項(xiàng)目工程部績(jī)效考核表.doc
- 超星爾雅學(xué)習(xí)通《數(shù)學(xué)文化》章節(jié)測(cè)試含答案
- 化療藥物外滲的應(yīng)急預(yù)案
- 水果驗(yàn)收標(biāo)準(zhǔn)全
- 保險(xiǎn)合同糾紛代理詞范文3篇
- 基坑地下水回灌井施工方案
- 英語(yǔ)教學(xué)問(wèn)卷調(diào)查
評(píng)論
0/150
提交評(píng)論