版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省滁州市民辦高中2025屆數(shù)學高二上期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一段記載:“一百八十九里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意為:“有一個人共行走了189里的路程,第一天健步行走,從第二天起,因腳痛每天走的路程為前一天的一半,走了6天才到達目的地.”則該人第一天行走的路程為()A.108里 B.96里C.64里 D.48里2.下列命題錯誤的是()A,B.命題“”的否定是“”C.設(shè),則“且”是“”的必要不充分條件D.設(shè),則“”是“”的必要不充分條件3.過雙曲線的右焦點F作一條漸近線的垂線,垂足為M,且FM的中點A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.4.已知等比數(shù)列的前項和為,若公比,則=()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的可能為()A.9 B.5C.4 D.36.為迎接2022年冬奧會,某校在體育冰球課上加強冰球射門訓練,現(xiàn)從甲、乙兩隊中各選出5名球員,并分別將他們依次編號為1,2,3,4,5進行射門訓練,他們的進球次數(shù)如折線圖所示,則在這次訓練中以下說法正確的是()A.甲隊球員進球的中位數(shù)比乙隊大 B.乙隊球員進球的中位數(shù)比甲隊大C.乙隊球員進球水平比甲隊穩(wěn)定 D.甲隊球員進球數(shù)的極差比乙隊小7.直線在y軸上的截距為()A. B.C. D.8.已知,,,則,,的大小關(guān)系是A. B.C. D.9.已知橢圓的左、右焦點分別為,為軸上一點,為正三角形,若,的中點恰好在橢圓上,則橢圓的離心率是()A. B.C. D.10.在區(qū)間內(nèi)隨機取一個數(shù),則方程表示焦點在軸上的橢圓的概率是A. B.C. D.11.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等12.已知呈線性相關(guān)的變量x與y的部分數(shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.7二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列中,,那么等于______.14.已知雙曲線,左右焦點分別為,若過右焦點的直線與以線段為直徑的圓相切,且與雙曲線在第二象限交于點,且軸,則雙曲線的離心率是_________.15.已知向量,,,若,則____________.16.已知數(shù)列是公差不為0的等差數(shù)列,,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,求.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,橢圓的上頂點到焦點的距離為.(1)求橢圓的方程;(2)若直線與橢圓相交于、兩點(、不是左、右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點.18.(12分)已知三點共線,其中是數(shù)列中的第n項.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前n項和.19.(12分)已知數(shù)列的首項,且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前n項和.20.(12分)三棱錐各棱長為2,E為AC邊上中點(1)證明:面BDE;(2)求二面角的正弦值21.(12分)某地從今年8月份開始啟動12-14歲人群新冠肺炎疫苗的接種工作,共有8千人需要接種疫苗.前4周的累計接種人數(shù)統(tǒng)計如下表:前x周1234累計接種人數(shù)y(千人)2.5344.5(1)求y關(guān)于的線性回歸方程;(2)根據(jù)(1)中所求的回歸方程,預計該地第幾周才能完成疫苗接種工作?參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為,22.(10分)已知拋物線上的點M(5,m)到焦點F的距離為6.(1)求拋物線C的方程;(2)過點作直線l交拋物線C于A,B兩點,且點P是線段AB的中點,求直線l方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意,記該人每天走的路程里數(shù)為,分析可得每天走的路程里數(shù)構(gòu)成以的為公比的等比數(shù)列,由求得首項即可【詳解】解:根據(jù)題意,記該人每天走的路程里數(shù)為,則數(shù)列是以的為公比的等比數(shù)列,又由這個人走了6天后到達目的地,即,則有,解可得:,故選:B.【點睛】本題考查數(shù)列的應用,涉及等比數(shù)列的通項公式以及前項和公式的運用,注意等比數(shù)列的性質(zhì)的合理運用.2、C【解析】根據(jù)題意,對四個選項一一進行分析,舉出例子當時,,即可判斷A選項;根據(jù)特稱命題的否定為全稱命題,可判斷B選項;根據(jù)充分條件和必要條件的定義,即可判斷CD選項.【詳解】解:對于A,當時,,,故A正確;對于B,根據(jù)特稱命題的否定為全稱命題,得“”的否定是“”,故B正確;對于C,當且時,成立;當時,卻不一定有且,如,因此“且”是“”的充分不必要條件,故C錯誤;對于D,因為當時,有可能等于0,當時,必有,所以“”是“”的必要不充分條件,故D正確.故選:C.3、A【解析】根據(jù)題意可表示出漸近線方程,進而可知的斜率,表示出直線方程,求出的坐標進而求得A點坐標,代入雙曲線方程整理求得和的關(guān)系式,進而求得離心率【詳解】:由題意設(shè)相應的漸近線:,則根據(jù)直線的斜率為,則的方程為,聯(lián)立雙曲線漸近線方程求出,則,,則的中點,把中點坐標代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:4、A【解析】根據(jù)題意,由等比數(shù)列的通項公式與前項和公式直接計算即可.【詳解】由已知可得.故選:A.5、D【解析】根據(jù)輸出結(jié)果可得輸出時,結(jié)合執(zhí)行邏輯確定輸入k的可能值,即可知答案.【詳解】由,得,則輸人的可能為.∴結(jié)合選項知:D符合要求.故選:D.6、C【解析】根據(jù)折線圖,求出甲乙中位數(shù)、平均數(shù)及方差、極差,即可判斷各選項的正誤.【詳解】由題圖,甲隊數(shù)據(jù)從小到大排序為,乙隊數(shù)據(jù)從小到大排序為,所以甲乙兩隊的平均數(shù)都為5,甲、乙進球中位數(shù)相同都為5,A、B錯誤;甲隊方差為,乙隊方差為,即,故乙隊球員進球水平比甲隊穩(wěn)定,C正確.甲隊極差為6,乙隊極差為4,故甲隊極差比乙隊大,D錯誤.故選:C7、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D8、B【解析】若對數(shù)式的底相同,直接利用對數(shù)函數(shù)的性質(zhì)判斷即可,若底不同,則根據(jù)結(jié)構(gòu)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性判斷大小【詳解】對于的大?。海?,明顯;對于的大?。簶?gòu)造函數(shù),則,當時,在上單調(diào)遞增,當時,在上單調(diào)遞減,即對于的大小:,,,故選B【點睛】將兩兩變成結(jié)構(gòu)相同的對數(shù)形式,然后利用對數(shù)函數(shù)的性質(zhì)判斷,對于結(jié)構(gòu)類似的,可以通過構(gòu)造函數(shù)來來比較大小,此題是一道中等難度的題目9、A【解析】根據(jù)題意得,取線段的中點,則根據(jù)題意得,,根據(jù)橢圓的定義可知,然后解出離心率的值.【詳解】因為為正三角形,所以,取線段的中點,連結(jié),則,所以,得,所以橢圓的離心率.故選:A.【點睛】求解離心率及其范圍的問題時,解題的關(guān)鍵在于畫出圖形,根據(jù)題目中的幾何條件列出關(guān)于,,的齊次式,然后得到關(guān)于離心率的方程或不等式求解10、D【解析】若方程表示焦點在軸上的橢圓,則,解得,,故方程表示焦點在軸上的橢圓的概率是,故選D.11、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C12、A【解析】根據(jù)回歸直線過樣本點的中心進行求解即可.【詳解】由題意可得,,則,解得故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、14【解析】根據(jù)等差數(shù)列的性質(zhì)得到,求得,再由,即可求解.【詳解】因為數(shù)列為等差數(shù)列,且,根據(jù)等差數(shù)列的性質(zhì),可得,解答,又由.故答案為:14.14、【解析】根據(jù)題意可得,進而可得,再根據(jù),可得再根據(jù)雙曲線的定義,即可得到,進而求出結(jié)果.【詳解】如圖所示:設(shè)切點為,所以,又軸所以,所以,由,,所以又,所以故答案為:.15、【解析】首先求出的坐標,再根據(jù)向量垂直得到,即可得到方程,解得即可;【詳解】解:因為向量,,,所以向量,因為,所以,即,解得故答案為:16、(1);(2).【解析】(1)根據(jù),且,,成等比數(shù)列,利用等比中項由,求得公差即可.(2)由(1)得到,再利用裂項相消法求解.【詳解】(1)設(shè)數(shù)列的公差為d,因為,且,,成等比數(shù)列,所以,即,解得或(舍去),所以數(shù)列的通項公式;(2)由(1)知:,所以.【點睛】方法點睛:求數(shù)列的前n項和的方法(1)公式法:①等差數(shù)列的前n項和公式,②等比數(shù)列的前n項和公式;(2)分組轉(zhuǎn)化法:把數(shù)列的每一項分成兩項或幾項,使其轉(zhuǎn)化為幾個等差、等比數(shù)列,再求解(3)裂項相消法:把數(shù)列的通項拆成兩項之差求和,正負相消剩下首尾若干項(4)倒序相加法:把數(shù)列分別正著寫和倒著寫再相加,即等差數(shù)列求和公式的推導過程的推廣(5)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列對應項之積構(gòu)成的,則這個數(shù)列的前n項和用錯位相減法求解.(6)并項求和法:一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和.形如an=(-1)nf(n)類型,可采用兩項合并求解三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)根據(jù)已知條件求出、、的值,可得出橢圓的標準方程;(2)設(shè)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結(jié)合韋達定理可得出關(guān)于、所滿足的等式,然后化簡直線的方程,即可求得直線所過定點的坐標.【小問1詳解】解:橢圓上頂點到焦點距離,又橢圓離心率為,故,,因此,橢圓方程為.【小問2詳解】解:設(shè)、,由題意可知且,橢圓的右頂點為,則,,因為以為直徑的圓過橢圓的右頂點,所以有,則,即,聯(lián)立,,即,①由韋達定理得,,所以,,化簡得,即或,均滿足①式.當時,直線,恒過定點,舍去;當時,直線,恒過定點.綜上所述,直線過定點.【點睛】方法點睛:求解直線過定點問題常用方法如下:(1)“特殊探路,一般證明”:即先通過特殊情況確定定點,再轉(zhuǎn)化為有方向、有目的的一般性證明;(2)“一般推理,特殊求解”:即設(shè)出定點坐標,根據(jù)題設(shè)條件選擇參數(shù),建立一個直線系或曲線的方程,再根據(jù)參數(shù)的任意性得到一個關(guān)于定點坐標的方程組,以這個方程組的解為坐標的點即為所求點;(3)求證直線過定點,常利用直線的點斜式方程或截距式來證明.18、(1)(2)【解析】(1)由三點共線可知斜率相等,即可得出答案;(2)由題可得,利用錯位相減法即可求出答案.【小問1詳解】三點共線,【小問2詳解】①②①—②得19、(1)證明見解析;(2)當為偶數(shù)時,;當為奇數(shù)時,.【解析】(1)根據(jù)等比數(shù)列的定義進行證明即可;(2)利用分組求和法,結(jié)合錯位相減法進行求解即可.【小問1詳解】由題知:所以又因為所以所以數(shù)列為以-1為首項,-1為公比的等比數(shù)列;【小問2詳解】由(1)知:,所以,,記,所以,當為偶數(shù)時,;當為奇數(shù)時,;記兩式相減得:,所以,所以,當偶數(shù)時,;當為奇數(shù)時,.20、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理即可證明;(2)建立如圖所示坐標系,則,易知平面BCD的法向量,利用空間向量法求出面BDE的法向量,結(jié)合向量的數(shù)量積計算即可得出結(jié)果.【小問1詳解】正四面體中各面分別是正三角形,E為AC邊上中點,,又平面,且,所以面BDE【小問2詳解】建立如圖所示坐標系,于是,,,,,易知平面BCD的法向量設(shè)面BDE的法向量,于是,令,則,,所以,所以,得所以二面角的正弦值為.21、(1);(2)預計第9周才能完成接種工
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025國家能源煤焦化運輸服務電子交易合同
- 2024年物業(yè)員工責任與安全協(xié)議書3篇
- 商丘職業(yè)技術(shù)學院《高爾夫技能技術(shù)(一)》2023-2024學年第一學期期末試卷
- 2024年塔吊司機勞動保護與職業(yè)健康檢查協(xié)議3篇
- 商丘師范學院《中學數(shù)學研究》2023-2024學年第一學期期末試卷
- 商丘師范學院《數(shù)據(jù)處理技術(shù)》2023-2024學年第一學期期末試卷
- 2024年生物制藥研發(fā)生產(chǎn)許可使用合同
- 2024年度智慧城市建設(shè)融資合同書a正規(guī)范版3篇
- 2024年電子商務平臺技術(shù)開發(fā)及運營轉(zhuǎn)讓合同
- 定期動產(chǎn)贈與合同范例
- 2024年房地產(chǎn)經(jīng)紀協(xié)理考試題庫新版
- CJ-T+355-2010小型生活污水處理成套設(shè)備
- 中醫(yī)治療筋傷案二
- 2023-2024學年廣東省廣州市九年級(上)質(zhì)檢英語試卷(1月份)
- 2022-2023學年北京市東城區(qū)北京版五年級上冊期末測試英語試卷(含聽力音頻)
- 網(wǎng)絡設(shè)備售后服務和培訓方案
- 大學學院輔導員工作室建設(shè)與管理辦法(試行)
- 微生物學(細胞型)智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱師范大學
- 嚴重精神障礙患者隨訪服務記錄表
- 學前衛(wèi)生學智慧樹知到期末考試答案章節(jié)答案2024年杭州師范大學
- 2024年成都環(huán)境投資集團有限公司招聘筆試沖刺題(帶答案解析)
評論
0/150
提交評論