版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆陜西省西安市西北大學(xué)附中高二上數(shù)學(xué)期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,,則A. B.C. D.2.橢圓的長軸長是()A.3 B.6C.9 D.43.下列數(shù)列是遞增數(shù)列的是()A. B.C. D.4.函數(shù),則的值為()A. B.C. D.5.某地政府為落實疫情防控常態(tài)化,不定時從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務(wù)員按001到780進(jìn)行編號,若018號被抽中,則下列編號也被抽中的是()A.076 B.122C.390 D.5226.圍棋起源于中國,據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關(guān)聯(lián),蘊含著中華文化的豐富內(nèi)涵.在某次國際圍棋比賽中,規(guī)定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據(jù)以往戰(zhàn)績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.367.“”是“直線和直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知點為雙曲線的左頂點,點和點在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.9.若某群體中成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.10.我們通常稱離心率是的橢圓為“黃金橢圓”.如圖,已知橢圓,,,,分別為左、右、上、下頂點,,分別為左、右焦點,為橢圓上一點,下列條件中能使橢圓為“黃金橢圓”的是()A. B.C.軸,且 D.四邊形的一個內(nèi)角為11.若拋物線上的點到其焦點的距離是到軸距離的倍,則等于A. B.1C. D.212.若則()A.?2 B.?1C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),數(shù)列是正項等比數(shù)列,且,則__________14.?dāng)?shù)列的前項和為,則該數(shù)列的通項公式___________15.如圖是一個邊長為4的正方形二維碼,為了測算圖中黑色部分的面積,在正方形區(qū)域內(nèi)隨機投擲1600個點,其中落入白色部分的有700個點,據(jù)此可估計黑色部分的面積為______________16.已知雙曲線的焦點,過F且斜率為1的直線與雙曲線有且只有一個交點,則雙曲線的方程為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知兩點(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點的圓C的切線方程18.(12分)已知圓經(jīng)過點和,且圓心在直線上.(1)求圓的方程;(2)過原點的直線與圓交于M,N兩點,若的面積為,求直線的方程.19.(12分)p:方程有兩個不等的負(fù)實數(shù)根;q:方程無實數(shù)根,若為真命題,為假命題,求實數(shù)m的取值范圍、20.(12分)如圖,四棱錐中,底面為矩形,底面,,點是棱的中點(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值21.(12分)如圖,在直三棱柱中,,,與交于點,為的中點,(1)求證:平面;(2)求證:平面平面22.(10分)已知函數(shù)在時有極值0.(1)求函數(shù)的解析式;(2)記,若函數(shù)有三個零點,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】通過解不等式得出集合B,可以做出集合A與集合B的關(guān)系示意圖,可得出選項.【詳解】因為,解不等式即,所以或,所以集合,作出集合A與集合B的示意圖如下圖所示:所以:,故選A【點睛】本題考查集合間的交集運算,屬于基礎(chǔ)題.2、B【解析】根據(jù)橢圓方程有,即可確定長軸長.【詳解】由橢圓方程知:,故長軸長為6.故選:B3、C【解析】分別判斷的符號,從而可得出答案.【詳解】解:對于A,,則,所以數(shù)列為遞減數(shù)列,故A不符合題意;對于B,,則,所以數(shù)列為遞減數(shù)列,故B不符合題意;對于C,,則,所以數(shù)列為遞增數(shù)列,故C符合題意;對于D,,則,所以數(shù)列遞減數(shù)列,故D不符合題意.故選:C.4、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B5、B【解析】根據(jù)系統(tǒng)抽樣的特點,寫出組數(shù)與對應(yīng)抽取編號的關(guān)系式,即可判斷和選擇.【詳解】根據(jù)題意,780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人,則需要分為組,每組人;設(shè)第組抽取的編號為,故可設(shè),又第一組抽中號,故可得,解得故,當(dāng)時,.故選:.6、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結(jié)果.【詳解】甲最終獲得冠軍的概率,故選:B.7、A【解析】因為直線和直線垂直,所以或,再根據(jù)充分必要條件的定義判斷得解.【詳解】因為“直線和直線垂直,所以或.當(dāng)時,直線和直線垂直;當(dāng)直線和直線垂直時,不一定成立.所以是直線和直線垂直的充分不必要條件,故選:A8、C【解析】設(shè)點在軸上方,由是等邊三角形得直線斜率.又直線過點,故方程為.代入雙曲線方程,得點的坐標(biāo)為.同理可得,點的坐標(biāo)為.故的面積為,選C.9、A【解析】利用對立事件的概率公式可求得所求事件的概率.【詳解】由對立事件概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.10、B【解析】先求出橢圓的頂點和焦點坐標(biāo),對于A,根據(jù)橢圓的基本性質(zhì)求出離心率判斷A;對于B,根據(jù)勾股定理以及離心率公式判斷B;根據(jù)結(jié)合斜率公式以及離心率公式判斷C;由四邊形的一個內(nèi)角為,即即三角形是等邊三角形,得到,結(jié)合離心率公式判斷D.【詳解】∵橢圓∴對于A,若,則,∴,∴,不滿足條件,故A不符合條件;對于B,,∴∴,∴∴,解得或(舍去),故B符合條件;對于C,軸,且,∴∵∴,解得∵,∴∴,不滿足題意,故C不符合條件;對于D,四邊形的一個內(nèi)角為,即即三角形是等邊三角形,∴∴,解得∴,故D不符合條件故選:B【點睛】本題主要考查了求橢圓離心率,涉及了勾股定理,斜率公式等的應(yīng)用,充分利用建立的等式是解題關(guān)鍵.11、D【解析】根據(jù)拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點睛】本題主要考查了拋物線的定義和性質(zhì).考查了考生對拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題12、B【解析】分子分母同除以,化弦為切,代入即得結(jié)果.【詳解】由題意,分子分母同除以,可得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##9.5【解析】根據(jù)給定條件計算當(dāng)時,的值,再結(jié)合等比數(shù)列性質(zhì)計算作答.【詳解】函數(shù),當(dāng)時,,因數(shù)列是正項等比數(shù)列,且,則,,同理,令,又,則有,,所以.故答案為:14、【解析】根據(jù)與關(guān)系求解即可.【詳解】當(dāng)時,,當(dāng)時,,檢驗:,所以.故答案為:15、9【解析】先根據(jù)點數(shù)求解概率,再結(jié)合幾何概型求解黑色部分的面積【詳解】由題設(shè)可估計落入黑色部分概率設(shè)黑色部分的面積為,由幾何概型計算公式可得解得故答案為:916、【解析】根據(jù)直線與雙曲線只有一個交點可知直線與雙曲線平行,由漸近線斜率可列出的齊次方程,利用齊次方程求解.【詳解】直線與雙曲線有且只有一個交點,且焦點,直線與雙曲線漸近線平行,,即,,即,.則雙曲線的方程為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求出圓心和半徑即可得到答案;(2)根據(jù)題意先求出切線的斜率,進(jìn)而通過點斜式求出切線方程.【小問1詳解】由題意,圓心,半徑,則圓C的方程為:.【小問2詳解】由題意,,則切線斜率為-1,所以切線方程為:.18、(1)(2)直線的方程為或或【解析】(1)由弦的中垂線與直線的交點為圓心即可求解;(2)由,可得或,進(jìn)而有或,顯然直線斜率存在,設(shè)直線,由點到直線的距離公式求出的值即可得答案.【小問1詳解】解:設(shè)弦的中點為,則有,因為,所以直線,所以直線的中垂線為,則圓心在直線上,且在直線上,聯(lián)立方程解得圓心,則圓的半徑為,所以圓方程為;【小問2詳解】解:設(shè)圓心到直線的距離為,因為,所以或,所以或,顯然直線斜率存在,所以設(shè)直線,則或,解得或或,故直線的方程為或或.19、【解析】利用復(fù)合命題的真假推出兩個命題為一真一假,求出m的范圍即可.【詳解】:方程有兩個不等的負(fù)實數(shù)根,解得,:方程無實數(shù)根,解得,所以:,:或.因為為真命題,為假命題,所以真假,或假真.(1)當(dāng)真假時,即真為真,所以,解得;(2)當(dāng)假真時,即真為真,所以,解得.綜上,取值范圍為20、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因為平面,四邊形為矩形,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因為,因此,平面.所以,平面的一個法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.21、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進(jìn)行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進(jìn)行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點,又為的中點,故,即:,且平面,平面,所以平面;【小問2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因為平面,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因為平面,所以平面平面.22、(1)(2)【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省長春汽車經(jīng)濟技術(shù)開發(fā)區(qū) 2024-2025學(xué)年九年級上學(xué)期10月期中考試數(shù)學(xué)試題(含答案)
- 海南省??谑泻D鲜∪A僑中學(xué)2024-2025年八年級上期中考試物理試題(含答案)
- 贛南師范大學(xué)《地圖學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《數(shù)字信號處理》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《高分子材料成型加工》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)協(xié)和學(xué)院《復(fù)變函數(shù)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《音樂教育概論》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《美術(shù)評論與寫作》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《課程與教學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《環(huán)境學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- SL-T+62-2020水工建筑物水泥灌漿施工技術(shù)規(guī)范
- xf124-2013正壓式消防空氣呼吸器標(biāo)準(zhǔn)
- ISO9001、ISO14001和ISO45001質(zhì)量環(huán)境及職業(yè)健康安全三個體系的對比
- 住院醫(yī)師臨床能力考核(體格檢查部分)評分表(醫(yī)院醫(yī)生用表)
- 2024年5月上海市普通高中學(xué)業(yè)水平等級性考試化學(xué)試卷(含答案)
- QCT957-2023洗掃車技術(shù)規(guī)范
- 2024年保密知識測試試題庫(綜合題)
- ORACLE ERP EBS財務(wù)全模塊操作手冊中文版
- 人教版 年六年級數(shù)學(xué)上冊教案(全冊)
- 國企紀(jì)委業(yè)務(wù)培訓(xùn)課件
- 2022-2023學(xué)年揚州市寶應(yīng)縣五年級上學(xué)期期中測試數(shù)學(xué)試卷(含答案解析)
評論
0/150
提交評論