版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆西藏日喀則區(qū)南木林高級中學(xué)高考數(shù)學(xué)試題模擬試卷(8)數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.42.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.3.已知點是雙曲線上一點,若點到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.24.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為()A. B.C. D.5.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.36.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.7.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.8.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.9.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.10.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.11.已知函數(shù),若,則a的取值范圍為()A. B. C. D.12.若函數(shù)恰有3個零點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前n項和為,,,則=_______.14.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.15.已知函數(shù),若對于任意正實數(shù),均存在以為三邊邊長的三角形,則實數(shù)k的取值范圍是_______.16.某校為了解家長對學(xué)校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:滿意度評分分組合計高一1366420高二2655220根據(jù)評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設(shè)兩個年級家長的評價結(jié)果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時,求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.18.(12分)第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點社區(qū)抽取戶居民進行調(diào)查,得到如下的列聯(lián)表.分類意識強分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為居民分類意識的強弱與政府宣傳普及工作有關(guān)?說明你的理由;(2)已知在試點前分類意識強的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強的戶居民中,隨機選出戶進行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考19.(12分)在中,內(nèi)角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.20.(12分)設(shè)為實數(shù),在極坐標(biāo)系中,已知圓()與直線相切,求的值.21.(12分)已知橢圓:的兩個焦點是,,在橢圓上,且,為坐標(biāo)原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求證:為定值.22.(10分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)復(fù)數(shù)的幾何意義可知復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,再根據(jù)復(fù)數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復(fù)數(shù)對應(yīng)的點在以原點為圓心,1為半徑的圓上,表示復(fù)數(shù)對應(yīng)的點與點間的距離,又復(fù)數(shù)對應(yīng)的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復(fù)數(shù)模的定義及其幾何意義應(yīng)用,屬于基礎(chǔ)題.2、A【解析】
作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計算每一條棱長即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關(guān)計算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題.3、A【解析】
設(shè)點的坐標(biāo)為,代入橢圓方程可得,然后分別求出點到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進而可求出離心率的值.【詳解】設(shè)點的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點睛】本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.4、C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當(dāng)時可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時,,故函數(shù)在上單調(diào)遞增,當(dāng)時,;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實數(shù)的取值范圍為.故選:C.【點睛】本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.5、C【解析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.6、D【解析】
先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.7、D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.8、C【解析】
畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.9、D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.10、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.11、C【解析】
求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時,是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時可先確定函數(shù)定義域,在定義域內(nèi)求解.12、B【解析】
求導(dǎo)函數(shù),求出函數(shù)的極值,利用函數(shù)恰有三個零點,即可求實數(shù)的取值范圍.【詳解】函數(shù)的導(dǎo)數(shù)為,令,則或,上單調(diào)遞減,上單調(diào)遞增,所以0或是函數(shù)y的極值點,函數(shù)的極值為:,函數(shù)恰有三個零點,則實數(shù)的取值范圍是:.故選B.【點睛】該題考查的是有關(guān)結(jié)合函數(shù)零點個數(shù),來確定參數(shù)的取值范圍的問題,在解題的過程中,注意應(yīng)用導(dǎo)數(shù)研究函數(shù)圖象的走向,利用數(shù)形結(jié)合思想,轉(zhuǎn)化為函數(shù)圖象間交點個數(shù)的問題,難度不大.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用求出公差,結(jié)合等差數(shù)列的通項公式可求.【詳解】設(shè)公差為,因為,所以,即.所以.故答案為:【點睛】本題主要考查等差數(shù)列通項公式的求解,利用等差數(shù)列的基本量是求解這類問題的通性通法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).14、【解析】
將已知由前n項和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關(guān)系求公比,屬于基礎(chǔ)題.15、【解析】
根據(jù)三角形三邊關(guān)系可知對任意的恒成立,將的解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)值域,再討論,轉(zhuǎn)化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數(shù),都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當(dāng),即時,該函數(shù)在上單調(diào)遞減,則;當(dāng),即時,,當(dāng),即時,該函數(shù)在上單調(diào)遞增,則,所以,當(dāng)時,因為,,所以,解得;當(dāng)時,,滿足條件;當(dāng)時,,且,所以,解得,綜上,,故答案為:【點睛】本題考查參數(shù)范圍,考查三角形的構(gòu)成條件,考查利用函數(shù)單調(diào)性求函數(shù)值域,考查分類討論思想與轉(zhuǎn)化思想.16、0.42【解析】
高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點睛】本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點列表分析導(dǎo)函數(shù)符號變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以.此時,則.由,解得.當(dāng)x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.對函數(shù)求導(dǎo),得.由,解得,.當(dāng)x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.又因為,,,,所以當(dāng)或時,直線與曲線,有且只有兩個公共點.即當(dāng)或時,函數(shù)在區(qū)間上有兩個零點.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.18、(1)有的把握認(rèn)為居民分類意識強與政府宣傳普及工作有很大關(guān)系.見解析(2)分布列見解析,期望為1.【解析】
(1)由在抽取的戶居民中隨機抽取戶,抽到分類意識強的概率為可得列聯(lián)表,然后計算后可得結(jié)論;(2)由已知的取值分別為,分別計算概率得分布列,由公式計算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機抽取戶,到分類意識強的概率為,可得分類意識強的有戶,故可得列聯(lián)表如下:分類意識強分類意識弱合計試點后試點前合計因為的觀測值,所以有的把握認(rèn)為居民分類意識強與政府宣傳普及工作有很大關(guān)系.(2)現(xiàn)在從試點前分類意識強的戶居民中,選出戶進行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點睛】本題考查獨立性檢驗,考查隨機變量的概率分布列和數(shù)學(xué)期望.考查學(xué)生的數(shù)據(jù)處理能力和運算求解能力.19、(1).(2)【解析】
(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國人民大學(xué)《信息管理專業(yè)研究方法論與創(chuàng)新教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州軟件職業(yè)技術(shù)學(xué)院《體育產(chǎn)品概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)2024年體育自評結(jié)果
- 浙江電力職業(yè)技術(shù)學(xué)院《生產(chǎn)運作實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 長安大學(xué)興華學(xué)院《瑜伽基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 餐飲文化與創(chuàng)新模板
- 雙十一醫(yī)保新品發(fā)布
- 專業(yè)基礎(chǔ)-房地產(chǎn)經(jīng)紀(jì)人《專業(yè)基礎(chǔ)》模擬試卷5
- 三年級學(xué)習(xí)導(dǎo)向模板
- 氣候變遷與寒露模板
- DB1303T382-2024 創(chuàng)傷性休克患者護理指南
- 2024-2025學(xué)年華東師大新版八年級上冊數(shù)學(xué)期末復(fù)習(xí)試卷(含詳解)
- 《道路車輛 48V供電電壓的電氣及電子部件 電性能要求和試驗方法》文本以及編制說明
- 十八項醫(yī)療核心制度考試題與答案
- 2024年鄂爾多斯市國資產(chǎn)投資控股集團限公司招聘管理單位遴選500模擬題附帶答案詳解
- 船形烏頭提取工藝優(yōu)化
- 財務(wù)總監(jiān)個人述職報告
- 居家養(yǎng)老護理人員培訓(xùn)方案
- 江蘇省無錫市2024年中考語文試卷【附答案】
- 管理者的九大財務(wù)思維
- 四年級上冊數(shù)學(xué)應(yīng)用題練習(xí)100題附答案
評論
0/150
提交評論