![江蘇省蘇州市重點名校2025屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁](http://file4.renrendoc.com/view9/M03/02/2C/wKhkGWcmc_yARud-AAHAy_OxXbQ494.jpg)
![江蘇省蘇州市重點名校2025屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁](http://file4.renrendoc.com/view9/M03/02/2C/wKhkGWcmc_yARud-AAHAy_OxXbQ4942.jpg)
![江蘇省蘇州市重點名校2025屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁](http://file4.renrendoc.com/view9/M03/02/2C/wKhkGWcmc_yARud-AAHAy_OxXbQ4943.jpg)
![江蘇省蘇州市重點名校2025屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁](http://file4.renrendoc.com/view9/M03/02/2C/wKhkGWcmc_yARud-AAHAy_OxXbQ4944.jpg)
![江蘇省蘇州市重點名校2025屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁](http://file4.renrendoc.com/view9/M03/02/2C/wKhkGWcmc_yARud-AAHAy_OxXbQ4945.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省蘇州市重點名校2025屆高一數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則化簡=()A. B.C. D.2.已知為常數(shù),函數(shù)在內(nèi)有且只有一個零點,則常數(shù)的值形成的集合是A. B.C. D.3.已知函數(shù)是定義在上的奇函數(shù),當(dāng)時,,則不等式的解集為()A. B.C.( D.4.定義運算:,則函數(shù)的圖像是()A. B.C. D.5.設(shè)集合,則()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)6.下列函數(shù),其中既是偶函數(shù)又在區(qū)間上單調(diào)遞減的函數(shù)為A. B.C. D.7.函數(shù)的零點所在的大致區(qū)間是A. B.C. D.8.已知,若函數(shù)在上為減函數(shù),且函數(shù)在上有最大值,則a的取值范圍為()A. B.C. D.9.已知是方程的兩根,且,則的值為A. B.C.或 D.10.已知一個樣本容量為7的樣本的平均數(shù)為5,方差為2,現(xiàn)樣本加入新數(shù)據(jù)4,5,6,此時樣本容量為10,若此時平均數(shù)為,方差為,則()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.求值:__________12.函數(shù)的最小值為_________________13.設(shè)為銳角,若,則的值為_______.14.在平面內(nèi)將點繞原點按逆時針方向旋轉(zhuǎn),得到點,則點的坐標(biāo)為__________15.已知一元二次不等式對一切實數(shù)x都成立,則k的取值范圍是___________.16.___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.對于等式,如果將視為自變量,視為常數(shù),為關(guān)于(即)的函數(shù),記為,那么,是冪函數(shù);如果將視為常數(shù),視為自變量,為關(guān)于(即)的函數(shù),記為,那么,是指數(shù)函數(shù);如果將視為常數(shù),視為自變量為關(guān)于(即)的函數(shù),記為,那么,是對數(shù)函數(shù).事實上,由這個等式還可以得到更多的函數(shù)模型.例如,如果為常數(shù)(為自然對數(shù)的底數(shù)),將視為自變量,則為的函數(shù),記為(1)試將表示成的函數(shù);(2)函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、單調(diào)性、奇偶性等,請根據(jù)你學(xué)習(xí)到的函數(shù)知識直接寫出該函數(shù)的性質(zhì),不必證明.并嘗試在所給坐標(biāo)系中畫出函數(shù)的圖象18.已知函數(shù)(且)的圖像過點.(1)求a的值;(2)求不等式的解集.19.已知實數(shù),定義域為的函數(shù)是偶函數(shù),其中為自然對數(shù)的底數(shù)(Ⅰ)求實數(shù)值;(Ⅱ)判斷該函數(shù)在上的單調(diào)性并用定義證明;(Ⅲ)是否存在實數(shù),使得對任意的,不等式恒成立.若存在,求出實數(shù)的取值范圍;若不存在,請說明理由20.物聯(lián)網(wǎng)(InternetofThings,縮寫:IOT)是基于互聯(lián)網(wǎng)、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能行使獨立功能的普通物體實現(xiàn)互聯(lián)互通的網(wǎng)絡(luò).其應(yīng)用領(lǐng)域主要包括運輸和物流、工業(yè)制造、健康醫(yī)療、智能環(huán)境(家庭、辦公、工廠)等,具有十分廣闊的市場前景.現(xiàn)有一家物流公司計劃租地建造倉庫儲存貨物,經(jīng)過市場調(diào)查了解到下列信息:倉庫每月土地占地費(單位:萬元),倉庫到車站的距離x(單位:千米,),其中與成反比,每月庫存貨物費(單位:萬元)與x成正比;若在距離車站9千米處建倉庫,則和分別為2萬元和7.2萬元.(1)求出與解析式;(2)這家公司應(yīng)該把倉庫建在距離車站多少千米處,才能使兩項費用之和最???最小費用是多少?21.已知函數(shù);(1)求的定義域與最小正周期;(2)求在區(qū)間上的單調(diào)性與最值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)誘導(dǎo)公式化簡即可得答案.【詳解】解:.故選:D2、C【解析】分析:函數(shù)在內(nèi)有且只有一個零點,等價于,有一個根,函數(shù)與只有一個交點,此時,,詳解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零點只有一個,∴函數(shù)與只有一個交點,此時,,.故選C.點睛:函數(shù)的性質(zhì)問題以及函數(shù)零點問題是高考的高頻考點,考生需要對初高中階段學(xué)習(xí)的十幾種初等函數(shù)的單調(diào)性、奇偶性、周期性以及對稱性非常熟悉;另外,函數(shù)零點的幾種等價形式:函數(shù)有零點函數(shù)在軸有交點方程有根函數(shù)與有交點.3、C【解析】根據(jù)奇偶性求分段函數(shù)的解析式,然后作出函數(shù)圖象,根據(jù)單調(diào)性解不等式即可.【詳解】因為當(dāng)時,,且函數(shù)是定義在上的奇函數(shù),所以時,,所以,作出函數(shù)圖象:所以函數(shù)是上的單調(diào)遞增,又因為不等式,所以,即,故選:C.4、A【解析】先求解析式,再判斷即可詳解】由題意故選:A【點睛】本題考查函數(shù)圖像的識別,考查指數(shù)函數(shù)性質(zhì),是基礎(chǔ)題5、C【解析】由題意分別計算出集合的補集和集合,然后計算出結(jié)果.【詳解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故選:C6、A【解析】分別考查函數(shù)的奇偶性和函數(shù)的單調(diào)性即可求得最終結(jié)果.【詳解】逐一考查所給的函數(shù)的性質(zhì):A.,函數(shù)為偶函數(shù),在區(qū)間上單調(diào)遞減;B.,函數(shù)為非奇非偶函數(shù),在區(qū)間上單調(diào)遞增;C.,函數(shù)為奇函數(shù),在區(qū)間上單調(diào)遞減;D.,函數(shù)為偶函數(shù),在區(qū)間上單調(diào)遞增;據(jù)此可得滿足題意的函數(shù)只有A選項.本題選擇A選項.【點睛】本題主要考查函數(shù)的單調(diào)性,函數(shù)的奇偶性等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.7、C【解析】分別求出的值,從而求出函數(shù)的零點所在的范圍【詳解】由題意,,,所以,所以函數(shù)的零點所在的大致區(qū)間是,故選C.【點睛】本題考察了函數(shù)的零點問題,根據(jù)零點定理求出即可,本題是一道基礎(chǔ)題8、A【解析】由復(fù)合函數(shù)在上的單調(diào)性可構(gòu)造不等式求得,結(jié)合已知可知;當(dāng)時,,若,可知無最大值;若,可得到,解不等式,與的范圍結(jié)合可求得結(jié)果.【詳解】在上為減函數(shù),解得:當(dāng)時,,此時當(dāng),時,在上單調(diào)遞增無最大值,不合題意當(dāng),時,在上單調(diào)遞減若在上有最大值,解得:,又故選【點睛】本題考查根據(jù)復(fù)合函數(shù)單調(diào)性求解參數(shù)范圍、根據(jù)分段函數(shù)有最值求解參數(shù)范圍的問題;關(guān)鍵是能夠通過分類討論的方式得到處于不同范圍時在區(qū)間內(nèi)的單調(diào)性,進而根據(jù)函數(shù)有最值構(gòu)造不等式;易錯點是忽略對數(shù)真數(shù)大于零的要求,造成范圍求解錯誤.9、A【解析】∵是方程的兩根,∴,∴又,∴,∵,∴又,∴,∴.選A點睛:解決三角恒等變換中給值求角問題的注意點解決“給值求角”問題時,解題的關(guān)鍵也是變角,即把所求角用含已知角的式子表示,然后求出適合的一個三角函數(shù)值.再根據(jù)所給的條件確定所求角的范圍,最后結(jié)合該范圍求得角,有時為了解題需要壓縮角的取值范圍10、B【解析】設(shè)這10個數(shù)據(jù)分別為:,進而根據(jù)題意求出和,進而再根據(jù)平均數(shù)和方差的定義求得答案.【詳解】設(shè)這10個數(shù)據(jù)分別為:,根據(jù)題意,,所以,.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】直接利用兩角和的正切公式計算可得;【詳解】解:故答案為:12、【解析】利用同角三角函數(shù)的基本關(guān)系,化簡函數(shù)的解析式,配方利用二次函數(shù)的性質(zhì),求得y的最小值【詳解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故當(dāng)cosx=1時,y有最小值等于0,故答案為0【點睛】本題考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,二次函數(shù)的圖象與性質(zhì),把函數(shù)配方是解題的關(guān)鍵13、【解析】由條件求得的值,利用二倍角公式求得和的值,再根據(jù),利用兩角差的正弦公式計算求得結(jié)果【詳解】∵為銳角,,∴,∴,故,故答案為.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和差的正弦公式、二倍角公式的應(yīng)用,屬于中檔題14、【解析】由條件可得與x軸正向的夾角為,故與x軸正向的夾角為設(shè)點B的坐標(biāo)為,則,,∴點的坐標(biāo)為答案:15、【解析】由題意,函數(shù)的圖象在x軸上方,故,解不等式組即可得k的取值范圍【詳解】解:因為不等式為一元二次不等式,所以,又一元二次不等式對一切實數(shù)x都成立,所以有,解得,即,所以實數(shù)k的取值范圍是,故答案為:.16、【解析】利用、兩角和的正弦展開式進行化簡可得答案.【詳解】故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(,)(2)答案見解析【解析】(1)結(jié)合對數(shù)運算的知識求得.(2)根據(jù)的解析式寫出的性質(zhì),并畫出圖象.【小問1詳解】依題意因為,,兩邊取以為底的對數(shù)得,所以將y表示為x的函數(shù),則,(,),即,(,);【小問2詳解】函數(shù)性質(zhì):函數(shù)的定義域為,函數(shù)值域,函數(shù)是非奇非偶函數(shù),函數(shù)的在上單調(diào)遞減,在上單調(diào)遞減函數(shù)的圖象:18、(1)(2)【解析】(1)代入點坐標(biāo)計算即可;(2)根據(jù)定義域和單調(diào)性即可獲解【小問1詳解】依題意有∴.【小問2詳解】易知函數(shù)在上單調(diào)遞增,又,∴解得.∴不等式的解集為.19、(Ⅰ)1;(Ⅱ)在上遞增,證明詳見解析;(Ⅲ)不存在.【解析】(Ⅰ)根據(jù)函數(shù)是偶函數(shù),得到恒成立,即恒成立,進而得到,即可求出結(jié)果;(Ⅱ)任取,且,根據(jù)題意,作差得到,進而可得出函數(shù)單調(diào)性;(Ⅲ)由(Ⅱ)知函數(shù)在上遞增,由函數(shù)是偶函數(shù),所以函數(shù)在上遞減,再由題意,不等式恒成立可化為恒成立,即對任意的恒成立,根據(jù)判別式小于0,即可得出結(jié)果.【詳解】(Ⅰ)因為定義域為的函數(shù)是偶函數(shù),則恒成立,即,故恒成立,因為不可能恒為,所以當(dāng)時,恒成立,而,所以(Ⅱ)該函數(shù)在上遞增,證明如下設(shè)任意,且,則,因為,所以,且;所以,即,即;故函數(shù)在上遞增(Ⅲ)由(Ⅱ)知函數(shù)在上遞增,而函數(shù)是偶函數(shù),則函數(shù)在上遞減.若存在實數(shù),使得對任意的,不等式恒成立.則恒成立,即,即對任意的恒成立,則,得到,故,所以不存在【點睛】本主要考查由函數(shù)奇偶性求參數(shù),用單調(diào)性的定義判斷函數(shù)單調(diào)性,以及由不等式恒成立求參數(shù)的問題,熟記函數(shù)單調(diào)性與奇偶性的定義即可,屬于??碱}型.20、(1),(2)把倉庫建在距離車站4千米處才能使兩項費用之和最小,最小費用是7.2萬元【解析】(1)設(shè)出與以及與x的解析式,將x=9的費用代入,求得答案;(2)列出兩項費用之和的表達式,利用基本不等式求得其最小值,可得答案.【小問1詳解】設(shè),,其中,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《100 以內(nèi)的加法和減法(二)-不進位加》(說課稿)-2024-2025學(xué)年二年級上冊數(shù)學(xué)人教版
- 13《人物描寫一組》第二課時《巧用多種方法寫“活”身邊人物》說課稿-2023-2024學(xué)年五年級語文下冊統(tǒng)編版
- Revision Being a good guest Period 2(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2024秋九年級語文上冊 第五單元 18《懷疑與學(xué)問》說課稿 新人教版
- Unit5 What will you do this weekend?Lesson25(說課稿)-2023-2024學(xué)年人教精通版英語四年級下冊
- 5 國家機構(gòu)有哪些 第三課時 《國家機關(guān)的產(chǎn)生》 說課稿-2024-2025學(xué)年道德與法治六年級上冊統(tǒng)編版
- 《 關(guān)注新詞新語讓語言鮮活生動》說課稿 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 1~5的認(rèn)識和加減法《第幾》(說課稿)-2024-2025學(xué)年一年級上冊數(shù)學(xué)人教版
- Module 9 Unit 1 It's winter.(說課稿)-2024-2025學(xué)年外研版(一起)英語二年級上冊
- 1《水到哪里去了》說課稿-2023-2024學(xué)年科學(xué)五年級下冊冀人版
- 西安經(jīng)濟技術(shù)開發(fā)區(qū)管委會招聘筆試真題2024
- 2025屆浙江省高三歷史選考總復(fù)習(xí)模擬測試(八)歷史試題(含答案)
- 六年級2025寒假特色作業(yè)
- 2025年江蘇轄區(qū)農(nóng)村商業(yè)銀行招聘筆試參考題庫含答案解析
- 人教版六年級數(shù)學(xué)下冊完整版教案及反思
- 少兒財商教育講座課件
- (八省聯(lián)考)云南省2025年普通高校招生適應(yīng)性測試 物理試卷(含答案解析)
- 2025藥劑科工作人員工作計劃
- 春節(jié)節(jié)后安全教育培訓(xùn)
- 2025年新高考數(shù)學(xué)一輪復(fù)習(xí)第5章重難點突破02向量中的隱圓問題(五大題型)(學(xué)生版+解析)
- 水土保持方案投標(biāo)文件技術(shù)部分
評論
0/150
提交評論