版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題12函數(shù)與方程【考點(diǎn)預(yù)測(cè)】一、函數(shù)的零點(diǎn)對(duì)于函數(shù),我們把使的實(shí)數(shù)叫做函數(shù)的零點(diǎn).二、方程的根與函數(shù)零點(diǎn)的關(guān)系方程有實(shí)數(shù)根函數(shù)的圖像與軸有公共點(diǎn)函數(shù)有零點(diǎn).三、零點(diǎn)存在性定理如果函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點(diǎn),即存在,使得也就是方程的根.四、二分法對(duì)于區(qū)間上連續(xù)不斷且的函數(shù),通過(guò)不斷地把函數(shù)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法.求方程的近似解就是求函數(shù)零點(diǎn)的近似值.五、用二分法求函數(shù)零點(diǎn)近似值的步驟(1)確定區(qū)間,驗(yàn)證,給定精度.(2)求區(qū)間的中點(diǎn).(3)計(jì)算.若則就是函數(shù)的零點(diǎn);若,則令(此時(shí)零點(diǎn)).若,則令(此時(shí)零點(diǎn))(4)判斷是否達(dá)到精確度,即若,則函數(shù)零點(diǎn)的近似值為(或);否則重復(fù)第(2)—(4)步.用二分法求方程近似解的計(jì)算量較大,因此往往借助計(jì)算完成.【方法技巧與總結(jié)】函數(shù)的零點(diǎn)相關(guān)技巧:①若連續(xù)不斷的函數(shù)在定義域上是單調(diào)函數(shù),則至多有一個(gè)零點(diǎn).②連續(xù)不斷的函數(shù),其相鄰的兩個(gè)零點(diǎn)之間的所有函數(shù)值同號(hào).③連續(xù)不斷的函數(shù)通過(guò)零點(diǎn)時(shí),函數(shù)值不一定變號(hào).④連續(xù)不斷的函數(shù)在閉區(qū)間上有零點(diǎn),不一定能推出.【題型歸納目錄】題型一:求函數(shù)的零點(diǎn)或零點(diǎn)所在區(qū)間題型二:利用函數(shù)的零點(diǎn)確定參數(shù)的取值范圍題型三:方程根的個(gè)數(shù)與函數(shù)零點(diǎn)的存在性問(wèn)題題型四:嵌套函數(shù)的零點(diǎn)問(wèn)題題型五:函數(shù)的對(duì)稱問(wèn)題題型六:函數(shù)的零點(diǎn)問(wèn)題之分段分析法模型題型七:唯一零點(diǎn)求值問(wèn)題題型八:分段函數(shù)的零點(diǎn)問(wèn)題題型九:零點(diǎn)嵌套問(wèn)題題型十:等高線問(wèn)題題型十一:二分法【典例例題】題型一:求函數(shù)的零點(diǎn)或零點(diǎn)所在區(qū)間例1.(2022·全國(guó)·模擬預(yù)測(cè))已知函數(shù)滿足,且是的一個(gè)零點(diǎn),則一定是下列函數(shù)的零點(diǎn)的是(
)A. B.C. D.例2.(2022·江西萍鄉(xiāng)·二模(文))已知函數(shù),則的所有零點(diǎn)之和為(
)A. B. C. D.例3.(2022·江西·模擬預(yù)測(cè)(文))已知函數(shù),,的零點(diǎn)分別是a,b,c,則a,b,c的大小順序是(
)A. B. C. D.例4.(2022·天津紅橋·一模)函數(shù)的零點(diǎn)所在的區(qū)間是(
)A. B. C. D.例5.(2022·安徽·安慶一中高三期末(理))函數(shù)的零點(diǎn)所在的區(qū)間為(
)A. B. C. D.例6.(2022·全國(guó)·高三專題練習(xí))若函數(shù)f(x)=ax+b有一個(gè)零點(diǎn)是2,那么函數(shù)g(x)=bx2-ax的零點(diǎn)為(
)A.0或 B.0 C. D.0或例7.(2022·全國(guó)·高三專題練習(xí))已知是函數(shù)的零點(diǎn),則_______.例8.(2022·廣東廣州·二模)函數(shù)的所有零點(diǎn)之和為_(kāi)_________.例9.(2022·內(nèi)蒙古呼和浩特·二模(文))若,,,則x、y、z由小到大的順序是___________.【方法技巧與總結(jié)】求函數(shù)零點(diǎn)的方法:(1)代數(shù)法,即求方程的實(shí)根,適合于宜因式分解的多項(xiàng)式;(2)幾何法,即利用函數(shù)的圖像和性質(zhì)找出零點(diǎn),適合于宜作圖的基本初等函數(shù).題型二:利用函數(shù)的零點(diǎn)確定參數(shù)的取值范圍例10.(2022·浙江·高三專題練習(xí))設(shè)是常數(shù),若函數(shù)不可能有兩個(gè)零點(diǎn),則b的取值情況不可能為(
)A.或 B.C.1 D.例11.(2022·吉林長(zhǎng)春·模擬預(yù)測(cè)(文))已知函數(shù),若在存在零點(diǎn),則實(shí)數(shù)值可以是(
)A. B. C. D.例12.(2022·浙江省浦江中學(xué)高三期末)已知二次函數(shù),設(shè),若函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則(
)A., B.,C., D.,例13.(2022·全國(guó)·高三專題練習(xí))函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)的取值范圍是(
)A. B. C. D.【方法技巧與總結(jié)】本類問(wèn)題應(yīng)細(xì)致觀察、分析圖像,利用函數(shù)的零點(diǎn)及其他相關(guān)性質(zhì),建立參數(shù)關(guān)系,列關(guān)于參數(shù)的不等式,解不等式,從而獲解.題型三:方程根的個(gè)數(shù)與函數(shù)零點(diǎn)的存在性問(wèn)題例14.(2022·新疆·三模(理))函數(shù)的零點(diǎn)個(gè)數(shù)為_(kāi)__________.例15.(2022·上海市市西中學(xué)高三階段練習(xí))已知函數(shù)是偶函數(shù),且,當(dāng)時(shí),,則方程在區(qū)間上的解的個(gè)數(shù)是________例16.(2022·全國(guó)·高三專題練習(xí))已知,給出下列四個(gè)結(jié)論:(1)若,則有兩個(gè)零點(diǎn);(2),使得有一個(gè)零點(diǎn);(3),使得有三個(gè)零點(diǎn);(4),使得有三個(gè)零點(diǎn).以上正確結(jié)論的序號(hào)是__.例17.(2022·黑龍江·哈師大附中三模(文))已知有且只有一個(gè)實(shí)數(shù)x滿足,則實(shí)數(shù)a的取值范圍是(
)A. B. C. D.例18.(2022·全國(guó)·高二)若存在兩個(gè)正實(shí)數(shù)、,使得等式成立,其中為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)的取值范圍是().A. B. C. D.例19.(2022·山東棗莊·高二期末)對(duì)于任意的實(shí)數(shù),總存在三個(gè)不同的實(shí)數(shù),使得成立,其中為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.例20.(2022·江西省撫州市第一中學(xué)高二月考(理))若存在兩個(gè)正實(shí)數(shù),,使得等式成立,其中為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.【方法技巧與總結(jié)】方程的根或函數(shù)零點(diǎn)的存在性問(wèn)題,可以依據(jù)區(qū)間端點(diǎn)處函數(shù)值的正負(fù)來(lái)確定,但是要確定函數(shù)零點(diǎn)的個(gè)數(shù)還需要進(jìn)一步研究函數(shù)在這個(gè)區(qū)間的單調(diào)性,若在給定區(qū)間上是單調(diào)的,則至多有一個(gè)零點(diǎn);如果不是單調(diào)的,可繼續(xù)分出小的區(qū)間,再類似做出判斷.題型四:嵌套函數(shù)的零點(diǎn)問(wèn)題例21.(2022·全國(guó)·高三專題練習(xí))已知函數(shù),設(shè)關(guān)于的方程有個(gè)不同的實(shí)數(shù)解,則的所有可能的值為()A. B.或 C.或 D.或或例22.(2022·全國(guó)·高三專題練習(xí)(文))已知函數(shù),若關(guān)于x的方程有四個(gè)不同的解,則實(shí)數(shù)m的取值集合為()A. B. C. D.例23.(2022·河南·高三月考(文))已知函數(shù),若關(guān)于的方程有且僅有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是()A. B. C. D.例24.(2022·安徽·馬鞍山二中高二期末(文))已知函數(shù),若關(guān)于的方程恰有3個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍是()A. B. C. D.例25.(2022·云南保山·高二期末(文))定義域?yàn)榈暮瘮?shù),若關(guān)于的方程恰有5個(gè)不同的實(shí)數(shù)解,,,,,則所有實(shí)數(shù),,,,之和為()A.12 B.16 C.20 D.24【方法技巧與總結(jié)】2.二次函數(shù)作為外函數(shù)可以通過(guò)參變分離減少運(yùn)算,但是前提就是函數(shù)的基本功要扎實(shí).題型五:函數(shù)的對(duì)稱問(wèn)題例26.(2022·安徽省滁州中學(xué)高三月考(文))已知函數(shù)的圖象上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,則實(shí)數(shù)的取值范圍是()A. B. C. D.例27.(2022·內(nèi)蒙古·赤峰二中三模(理))若直角坐標(biāo)平面內(nèi)A、B兩點(diǎn)滿足①點(diǎn)A、B都在函數(shù)的圖像上;②點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,則點(diǎn)是函數(shù)的一個(gè)“姊妹點(diǎn)對(duì)”.點(diǎn)對(duì)與可看作是同一個(gè)“姊妹點(diǎn)對(duì)”,已知函數(shù),則的“姊妹點(diǎn)對(duì)”有()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)例28.(2022·湖南·高三月考)若直角坐標(biāo)平面內(nèi),兩點(diǎn)滿足:①點(diǎn),都在函數(shù)的圖象上;②點(diǎn),關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)是函數(shù)的一個(gè)“姊妹點(diǎn)對(duì)”點(diǎn)對(duì)與可看作是同一個(gè)“姊妹點(diǎn)對(duì)”.已知函數(shù)恰有兩個(gè)“姊妹點(diǎn)對(duì)”,則實(shí)數(shù)的取值范圍是()A. B. C. D.例29.(2022·浙江·高三專題練習(xí))若直角坐標(biāo)系內(nèi)A,B兩點(diǎn)滿足:(1)點(diǎn)A,B都在圖象上;(2)點(diǎn)A,B關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)是函數(shù)的一個(gè)“和諧點(diǎn)對(duì)”,與可看作一個(gè)“和諧點(diǎn)對(duì)”.已知函數(shù)則的“和諧點(diǎn)對(duì)”有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)【方法技巧與總結(jié)】題型六:函數(shù)的零點(diǎn)問(wèn)題之分段分析法模型例30.(2022·浙江奉化·高二期末)若函數(shù)至少存在一個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.例31.(2022·天津·耀華中學(xué)高二期中)設(shè)函數(shù),記,若函數(shù)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是A. B.C. D.例32.(2022·湖南·長(zhǎng)沙一中高三月考(文))設(shè)函數(shù)(其中為自然對(duì)數(shù)的底數(shù)),若函數(shù)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.例33.(2022·天津·南開(kāi)中學(xué)高三)設(shè)函數(shù)(其中為自然對(duì)數(shù)的底數(shù)),若函數(shù)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是A. B.C. D.題型七:唯一零點(diǎn)求值問(wèn)題例34.(2022·安徽蚌埠·模擬預(yù)測(cè)(理))已知函數(shù)有唯一零點(diǎn),則()A. B. C. D.例35.(2022·遼寧沈陽(yáng)·模擬預(yù)測(cè))已知函數(shù)分別是定義在上的偶函數(shù)和奇函數(shù),且,若函數(shù)有唯一零點(diǎn),則正實(shí)數(shù)的值為()A. B. C. D.例36.(2022·新疆·莎車縣第一中學(xué)高三期中)已知函數(shù),分別是定義在上的偶函數(shù)和奇函數(shù),且,若函數(shù)有唯一零點(diǎn),則實(shí)數(shù)的值為()A.或 B.1或 C.或2 D.或1例37.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)有唯一零點(diǎn),則()A. B. C. D.1例38.(2022·云南師大附中高三月考(理))已知函數(shù)有唯一零點(diǎn),則()A.1 B. C. D.【方法技巧與總結(jié)】利用函數(shù)零點(diǎn)的情況求參數(shù)的值或取值范圍的方法:(1)利用零點(diǎn)存在性定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問(wèn)題求解.(3)轉(zhuǎn)化為兩個(gè)熟悉的函數(shù)圖像的上、下關(guān)系問(wèn)題,從而構(gòu)建不等式求解.題型八:分段函數(shù)的零點(diǎn)問(wèn)題例39.(2022·全國(guó)·高三專題練習(xí))已知函數(shù),,若函數(shù)有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.例40.(2022·江蘇·高三專題練習(xí))已知函數(shù),函數(shù),若有兩個(gè)零點(diǎn),則m的取值范圍是().A. B. C. D.例41.(2022·全國(guó)全國(guó)·模擬預(yù)測(cè)(理))已知函數(shù)若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.例42.(2022·北京·北師大實(shí)驗(yàn)中學(xué)高三月考)已知函數(shù),若函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.【方法技巧與總結(jié)】已知函數(shù)零點(diǎn)個(gè)數(shù)(方程根的個(gè)數(shù))求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,進(jìn)而構(gòu)造兩個(gè)函數(shù),然后在同一平面直角坐標(biāo)系中畫(huà)出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.題型九:零點(diǎn)嵌套問(wèn)題例43.(2022·湖北武漢·高二月考)已知函數(shù)有三個(gè)不同的零點(diǎn).其中,則的值為()A.1 B. C. D.例44.(2022·全國(guó)·模擬預(yù)測(cè)(理))已知函數(shù)有三個(gè)不同的零點(diǎn)(其中),則的值為()A. B. C. D.例45.(2022·吉林·白城一中高三期末(理))已知函數(shù)有三個(gè)不同的零點(diǎn)(其中),則的值為()A. B. C. D.1例46.(2022·浙江省杭州第二中學(xué)高三開(kāi)學(xué)考試)已知函數(shù),有三個(gè)不同的零點(diǎn),(其中),則的值為()A. B. C.1 D.1【方法技巧與總結(jié)】解決函數(shù)零點(diǎn)問(wèn)題,常常利用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想.題型十:等高線問(wèn)題例47.(2021·陜西·千陽(yáng)縣中學(xué)模擬預(yù)測(cè)(理))已知函數(shù),若方程的個(gè)不同實(shí)根從小到大依次為,,,,有以下三個(gè)結(jié)論:①且;②當(dāng)時(shí),且;③.其中正確的結(jié)論個(gè)數(shù)為()A. B. C. D.例48.(2021·江蘇省天一中學(xué)高三月考)已知函數(shù),若方程有3個(gè)不同的實(shí)根,則的取值范圍為()A. B. C. D.例49.(2021·浙江·高一單元測(cè)試)已知函數(shù),其中,若方程有四個(gè)不同的實(shí)根、、、,則的取值范圍是()A. B. C. D.例50.(2021·四川省新津中學(xué)高一開(kāi)學(xué)考試)已知函數(shù),若方程有四個(gè)不同的實(shí)根,,,,滿足,則的取值范圍是()A. B. C. D.例51.(2021·重慶市第七中學(xué)校模擬預(yù)測(cè))已知函數(shù),若方程有四個(gè)不等實(shí)根,時(shí),不等式恒成立,則實(shí)數(shù)的最小值為()A. B. C. D.題型十一:二分法例52.(2022·全國(guó)·高三專題練習(xí))用二分法求函數(shù)的一個(gè)零點(diǎn),根據(jù)參考數(shù)據(jù),可得函數(shù)的一個(gè)零點(diǎn)的近似解(精確到0.1)為(
)(參考數(shù)據(jù):,,,,)A. B. C. D.例53.(2022·全國(guó)·高三專題練習(xí))用二分法求函數(shù)在區(qū)間上的零點(diǎn),要求精確度為0.01時(shí),所需二分區(qū)間的次數(shù)最少為(
)A.6 B.7 C.8 D.9例54.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)()的一個(gè)零點(diǎn)附近的函數(shù)值的參考數(shù)據(jù)如下表:x00.50.531250.56250.6250.751f(x)1.3070.0840.0090.0660.2150.5121.099由二分法,方程的近似解(精確度0.05)可能是()A.0.625 B.0.009 C.0.5625 D.0.066例55.(2022·全國(guó)·高三專題練習(xí))已知方程的根在區(qū)間上,第一次用二分法求其近似解時(shí),其根所在區(qū)間應(yīng)為_(kāi)_________.【過(guò)關(guān)測(cè)試】一、單選題1.(2022·海南省直轄縣級(jí)單位·三模)設(shè)函數(shù)定義域?yàn)镽,為奇函數(shù),為偶函數(shù),當(dāng)時(shí),,則函數(shù)有(
)個(gè)零點(diǎn)A.4 B.5 C.6 D.72.(2022·安徽·模擬預(yù)測(cè)(文))已知函數(shù),若有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(
)A. B. C. D.3.(2022·河南河南·三模(理))函數(shù)的所有零點(diǎn)之和為(
)A.0 B.2 C.4 D.64.(2022·陜西·長(zhǎng)安一中模擬預(yù)測(cè)(文))已知函數(shù),,的零點(diǎn)分別為、、,則、、的大小順序?yàn)椋?/p>
)A. B.C. D.5.(2022·天津·靜海一中高三階段練習(xí))已知函數(shù)是周期為的周期函數(shù),且當(dāng)時(shí)時(shí),,則函數(shù)的零點(diǎn)個(gè)數(shù)是(
)A. B. C. D.6.(2022·天津·高三專題練習(xí))設(shè)函數(shù)有5個(gè)不同的零點(diǎn),則正實(shí)數(shù)的取值范圍為(
)A. B. C. D.7.(2022·海南·嘉積中學(xué)模擬預(yù)測(cè))已知定義在上的函數(shù)滿足如下條件:①函數(shù)的圖象關(guān)于軸對(duì)稱;②對(duì)于任意;③當(dāng)時(shí),;若過(guò)點(diǎn)的直線與函數(shù)的圖象在上恰有4個(gè)交點(diǎn),則直線的斜率的取值范圍是(
)A. B. C. D.8.(2022·全國(guó)·高三階段練習(xí))函數(shù)的零點(diǎn)個(gè)數(shù)為(
).A. B. C. D.9.(2022·四川·高三階段練習(xí)(文))已知函數(shù),恰有2個(gè)零點(diǎn),則的取值范圍是(
)A. B. C. D.10.(2022·河南·模擬預(yù)測(cè)(理))已知函數(shù)為定義在上的單調(diào)函數(shù),且.若函數(shù)有3個(gè)零點(diǎn),則的取值范圍為(
)A. B.C. D.11.(2022·湖南·模擬預(yù)測(cè))已知,則的解集是(
)A. B.或C.或 D.或二、多選題12.(2022·遼寧·三模)已知函數(shù)為定義在R上的單調(diào)函數(shù),且.若函數(shù)有3個(gè)零點(diǎn),則a的取值可能為(
)A.2 B. C.3 D.13.(2022·廣東·高三階段練習(xí))設(shè)函數(shù),則下列命題中正確的是(
)A.若方程有四個(gè)不同的實(shí)根,,,,則的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京工業(yè)大學(xué)浦江學(xué)院《數(shù)據(jù)庫(kù)原理與應(yīng)用》2021-2022學(xué)年期末試卷
- 電纜溝施工組織設(shè)計(jì)
- 武昌水果湖第二小學(xué)教學(xué)綜合樓工程施工組織設(shè)計(jì)
- 南京工業(yè)大學(xué)浦江學(xué)院《酒店市場(chǎng)營(yíng)銷》2022-2023學(xué)年第一學(xué)期期末試卷
- 《校園的早晨》說(shuō)課稿
- 南京工業(yè)大學(xué)浦江學(xué)院《工程力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 南京工業(yè)大學(xué)《綜合客運(yùn)樞紐規(guī)劃與設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 組織培訓(xùn)合同(2篇)
- 南京工業(yè)大學(xué)《藥用高分子材料學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 南京工業(yè)大學(xué)《水質(zhì)工程學(xué)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國(guó)電影發(fā)展史簡(jiǎn)介
- 2023北京海淀區(qū)高二上學(xué)期期末語(yǔ)文試題及答案
- 糧油售后服務(wù)承諾書(shū)
- 科研倫理與學(xué)術(shù)規(guī)范-課后作業(yè)答案
- 藥學(xué)職業(yè)生涯人物訪談
- 單位職工獨(dú)生子女父母一次性退休補(bǔ)貼申請(qǐng)表
- 國(guó)有集團(tuán)公司中層及員工履職追責(zé)問(wèn)責(zé)處理辦法模版
- 管理學(xué)-第6章-組織設(shè)計(jì)
- 2020醫(yī)用氧藥典標(biāo)準(zhǔn)
- 七年級(jí)生物作業(yè)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論