2025屆邯鄲市重點中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第1頁
2025屆邯鄲市重點中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第2頁
2025屆邯鄲市重點中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第3頁
2025屆邯鄲市重點中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第4頁
2025屆邯鄲市重點中學(xué)高考沖刺數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆邯鄲市重點中學(xué)高考沖刺數(shù)學(xué)模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件2.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.3.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.4.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.105.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關(guān)于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個數(shù)為()A.1 B.2 C.3 D.46.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}7.已知的部分圖象如圖所示,則的表達(dá)式是()A. B.C. D.8.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.9.如圖,點E是正方體ABCD-A1B1C1D1的棱DD1的中點,點F,M分別在線段AC,BD1(不包含端點)上運動,則()A.在點F的運動過程中,存在EF//BC1B.在點M的運動過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值10.某個命題與自然數(shù)有關(guān),且已證得“假設(shè)時該命題成立,則時該命題也成立”.現(xiàn)已知當(dāng)時,該命題不成立,那么()A.當(dāng)時,該命題不成立 B.當(dāng)時,該命題成立C.當(dāng)時,該命題不成立 D.當(dāng)時,該命題成立11.函數(shù)的圖象可能是()A. B. C. D.12.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)雙曲線的一條漸近線方程為,則該雙曲線的離心率為____________.14.已知函數(shù)為奇函數(shù),,且與圖象的交點為,,…,,則______.15.已知是拋物線上一點,是圓關(guān)于直線對稱的曲線上任意一點,則的最小值為________.16.已知,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對的邊分別是,若點是函數(shù)圖象的一個對稱中心,且,求面積的最大值.18.(12分)為貫徹十九大報告中“要提供更多優(yōu)質(zhì)生態(tài)產(chǎn)品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現(xiàn)分別從、、三塊試驗田中各隨機抽取株植物測量高度,數(shù)據(jù)如下表(單位:厘米):組組組假設(shè)所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數(shù)據(jù)的平均數(shù)記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數(shù)據(jù)與表格中的所有數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,試比較和的大小.(結(jié)論不要求證明)19.(12分)已知,(其中).(1)求;(2)求證:當(dāng)時,.20.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結(jié)論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.21.(12分)已知函數(shù).(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;(2)若,設(shè)是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.22.(10分)已知非零實數(shù)滿足.(1)求證:;(2)是否存在實數(shù),使得恒成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)向量共線的性質(zhì)依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當(dāng)與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學(xué)生的推斷能力.2、A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導(dǎo)公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.3、D【解析】

首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點,考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.4、C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設(shè)等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構(gòu)建和的方程組求通項公式.5、B【解析】

對函數(shù)化簡可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數(shù)的圖象向右平移個單位長度后得到的函數(shù)為,其圖象關(guān)于軸對稱,則,解得,故對任意整數(shù),,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點、對稱性,考查學(xué)生的計算求解能力與推理能力,屬于中檔題.6、B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.7、D【解析】

由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點的坐標(biāo)代入函數(shù)的解析式,結(jié)合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.8、B【解析】

連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運算律的應(yīng)用,屬于基礎(chǔ)題.9、C【解析】

采用逐一驗證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點到平面的距離,由//,平面,平面所以//平面,則點到平面的距離即點到平面的距離,所以為定值,故四面體EMAC的體積為定值錯誤由//,平面,平面所以//平面,則點到平面的距離即為點到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點睛】本題考查線面、線線之間的關(guān)系,考驗分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.10、C【解析】

寫出命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題,結(jié)合原命題與逆否命題的真假性一致進(jìn)行判斷.【詳解】由逆否命題可知,命題“假設(shè)時該命題成立,則時該命題也成立”的逆否命題為“假設(shè)當(dāng)時該命題不成立,則當(dāng)時該命題也不成立”,由于當(dāng)時,該命題不成立,則當(dāng)時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應(yīng)用,解題時要寫出原命題的逆否命題,結(jié)合逆否命題的等價性進(jìn)行判斷,考查邏輯推理能力,屬于中等題.11、A【解析】

先判斷函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結(jié)合排除法可得出正確選項.【詳解】函數(shù)的定義域為,,該函數(shù)為偶函數(shù),排除B、D選項;當(dāng)時,,排除C選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式辨別函數(shù)的圖象,一般分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,結(jié)合排除法得出結(jié)果,考查分析問題和解決問題的能力,屬于中等題.12、A【解析】

設(shè),延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設(shè),延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)漸近線得到,,計算得到離心率.【詳解】,一條漸近線方程為:,故,,.故答案為:.【點睛】本題考查了雙曲線的漸近線和離心率,意在考查學(xué)生的計算能力.14、18【解析】

由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點對稱,結(jié)合函數(shù)的對稱性進(jìn)行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點對稱,,函數(shù)關(guān)于點對稱,所以兩個函數(shù)圖象的交點也關(guān)于點(1,2)對稱,與圖像的交點為,,…,,兩兩關(guān)于點對稱,.故答案為:18【點睛】本題考查了函數(shù)對稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關(guān)鍵,屬于中檔題.15、【解析】

由題意求出圓的對稱圓的圓心坐標(biāo),求出對稱圓的圓坐標(biāo)到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設(shè)圓心關(guān)于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,,即,所以,故答案為:.【點睛】該題考查的是有關(guān)動點距離的最小值問題,涉及到的知識點有點關(guān)于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.16、【解析】解:由題意可知:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)3;(Ⅱ).【解析】

(Ⅰ)函數(shù),利用和差公式和倍角公式,化簡即可求得;(Ⅱ)由(Ⅰ)知函數(shù),根據(jù)點是函數(shù)圖象的一個對稱中心,代入可得,利用余弦定理、基本不等式的性質(zhì)即可得出.【詳解】(Ⅰ)的最大值為最小正周期為(Ⅱ)由題意及(Ⅰ)知,,故故的面積的最大值為.【點睛】本題考查三角函數(shù)的和差公式、倍角公式、三角函數(shù)的圖象與性質(zhì)、余弦定理、基本不等式的性質(zhì),考查理解辨析能力與運算求解能力,屬于中檔基礎(chǔ)題.18、(1);(2);(3).【解析】

設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設(shè)事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結(jié)果;(2)設(shè)事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據(jù)題意直接判斷和的大小即可.【詳解】設(shè)事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設(shè)事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設(shè)事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點睛】本題考查概率的求法,考查互斥事件加法公式、相互獨立事件概率乘法公式等基礎(chǔ)知識,考查運算求解能力,是中等題.19、(1)(2)見解析【解析】

(1)取,則;取,則,∴;(2)要證,只需證,當(dāng)時,;假設(shè)當(dāng)時,結(jié)論成立,即,兩邊同乘以3得:而∴,即時結(jié)論也成立,∴當(dāng)時,成立.綜上原不等式獲證.20、(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解析】

(Ⅰ)可考慮采用補形法,取的中點為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過我們反推出點對應(yīng)位置應(yīng)在處,進(jìn)而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點,以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的中點為,連接.則,所以平面.因為是的中點,所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因為,所以平面.因為平面,所以平面平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論