版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
云南省楚雄州雙柏縣一中2025屆高三二診模擬考試數(shù)學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.2.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.43.已知集合,則全集則下列結論正確的是()A. B. C. D.4.已知向量,,若,則()A. B. C. D.5.設遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.6.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是7.在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.118.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定9.某學校調(diào)查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是17.5,30],樣本數(shù)據(jù)分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據(jù)直方圖,這200名學生中每周的自習時間不少于22.5小時的人數(shù)是()A.56 B.60 C.140 D.12010.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或11.已知復數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.12.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若展開式的二項式系數(shù)之和為64,則展開式各項系數(shù)和為__________.14.某學校高一、高二、高三年級的學生人數(shù)之比為,現(xiàn)按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.15.設數(shù)列的前n項和為,且,若,則______________.16.設是公差不為0的等差數(shù)列的前n項和,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長為,離心率(1)求橢圓的方程;(2)設分別為橢圓與軸正半軸和軸正半軸的交點,是橢圓上在第一象限的一點,直線與軸交于點,直線與軸交于點,問與面積之差是否為定值?說明理由.18.(12分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.19.(12分)已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標為,求的值.20.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點,使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.21.(12分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.(1)求橢圓C的方程;(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關系式.22.(10分)已知直線與拋物線交于兩點.(1)當點的橫坐標之和為4時,求直線的斜率;(2)已知點,直線過點,記直線的斜率分別為,當取最大值時,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.2、C【解析】
根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點睛】本題考查中位數(shù)的計算,屬基礎題.3、D【解析】
化簡集合,根據(jù)對數(shù)函數(shù)的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.4、A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.5、A【解析】
根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.6、B【解析】
根據(jù)圖象求得函數(shù)的解析式,結合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.7、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎題目.8、A【解析】
利用的坐標為,設直線的方程為,然后聯(lián)立方程得,最后利用韋達定理求解即可【詳解】據(jù)題意,得點的坐標為.設直線的方程為,點,的坐標分別為,.討論:當時,;當時,據(jù),得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎題9、C【解析】
試題分析:由題意得,自習時間不少于小時的頻率為,故自習時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應用.10、C【解析】
由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的概念,考查了分類討論的數(shù)學思想.11、A【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.12、C【解析】
將圓,化為標準方程為,求得圓心為.根據(jù)圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題意得展開式的二項式系數(shù)之和求出的值,然后再計算展開式各項系數(shù)的和.【詳解】由題意展開式的二項式系數(shù)之和為,即,故,令,則展開式各項系數(shù)的和為.故答案為:【點睛】本題考查了二項展開式的二項式系數(shù)和項的系數(shù)和問題,需要運用定義加以區(qū)分,并能夠運用公式和賦值法求解結果,需要掌握解題方法.14、【解析】
根據(jù)分層抽樣的定義建立比例關系即可得到結論.【詳解】設抽取的樣本為,則由題意得,解得.故答案為:【點睛】本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.15、9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關系求數(shù)列通項的問題,要注意n的范圍,考查學生運算求解能力,是一道中檔題.16、18【解析】
將已知已知轉化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質以及求和,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是定值,詳見解析【解析】
(1)根據(jù)長軸長為,離心率,則有求解.(2)設,則,直線,令得,,則,直線,令,得,則,再根據(jù)求解.【詳解】(1)依題意得,解得,則橢圓的方程.(2)設,則,直線,令得,,則,直線,令,得,則,.【點睛】本題主要考查橢圓的方程及直線與橢圓的位置關系,還考查了平面幾何知識和運算求解的能力,屬于中檔題.18、(1)(2)【解析】
(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結合,,求出的范圍,注意.進而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應用,求三角形的周長的范圍問題.屬于中檔題.19、(1);(2).【解析】
(1)根據(jù)橢圓的離心率為,得到,根據(jù)直線與圓的位置關系,得到原心到直線的距離等于半徑,得到,從而求得,進而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯(lián)立,利用韋達定理,向量的數(shù)量積,結合已知條件求得結果.【詳解】(1)由離心率為,可得,,且以原點O為圓心,橢圓C的長半軸長為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當直線l的斜率不存在時,,,由于;②當直線l的斜率為0時,,,則;③當直線l的斜率不為0時,設直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點睛】該題考查直線與圓錐曲線的綜合問題,橢圓的標準方程,考查直線與橢圓的位置關系,求向量數(shù)量積,在解題的過程中,注意對直線方程的分類討論,屬于中檔題目.20、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點,,使直線與平面所成的角正弦值為.【解析】
(Ⅰ)取中點,連結、,推導出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點,連結,,推導出平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值;(Ⅲ)假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.利用向量法能求出結果.【詳解】(Ⅰ)證明:取中點,連結、,是邊長為2的等邊三角形,,,,點為的中點,,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點,連結,,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點,平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,1,,,0,,,1,,,0,,,,,,0,,,,,設平面的法向量,,,則,取,得,,,設平面的法向量,,,則,取,得,設二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.則,,,,,,平面的法向量,,解得,線段上是存在一點,,使直線與平面所成的角正弦值為.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.21、(1);(2)m-n-1=0【解析】試題分析:(1)利用M與短軸端點構成等腰直角三角形,可求得b的值,進而得到橢圓方程;(2)設出過M的直線l的方程,將l與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年綠色環(huán)保食材配送餐飲服務協(xié)議3篇
- 辦公空間照明系統(tǒng)升級合同樣本
- 地熱資源招投標投訴處理措施
- 航空航天計量變更準則
- 冷庫安裝合同化妝品研究
- 低碳環(huán)保住宅的二手房買賣合同
- 水利工程保溫施工服務協(xié)議
- 企業(yè)員工商標提案管理辦法
- 玩具制造企業(yè)協(xié)議休假管理辦法
- 預付賬款審核風險控制的關鍵
- 塑料污染與環(huán)境保護
- 2024年鍋爐運行值班員(中級)技能鑒定理論考試題庫(含答案)
- 福建省泉州市2023-2024學年高一上學期期末質檢英語試題(解析版)
- 中華人民共和國民法典(總則)培訓課件
- 蘇教版(2024新版)七年級上冊生物期末模擬試卷 3套(含答案)
- 《項目管理》完整課件
- IB課程-PYP小學項目省公開課獲獎課件說課比賽一等獎課件
- 上市央國企數(shù)智化進程中人才就業(yè)趨勢
- 2024-2030年中國苯胺行業(yè)現(xiàn)狀動態(tài)與需求前景展望報告
- 英雄之旅思維模型
- 釘釘數(shù)字化管理師中級題庫
評論
0/150
提交評論