版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中數(shù)學(xué)精選資源2/28.2.4三角恒等變換的應(yīng)用考點(diǎn)學(xué)習(xí)目標(biāo)半角公式及其運(yùn)用運(yùn)用三角恒等變換公式進(jìn)行簡(jiǎn)單的三角恒等變換,理解半角公式的推導(dǎo)過(guò)程及簡(jiǎn)單應(yīng)用積化和差和和差化積及其運(yùn)用理解積化和差和和差化積的推導(dǎo)過(guò)程及其運(yùn)用【學(xué)習(xí)重點(diǎn)】半角公式、積化和差和和差化積公式的推導(dǎo)及其應(yīng)用【學(xué)習(xí)難點(diǎn)】半角公式、積化和差和和差化積公式的應(yīng)用問(wèn)題1:半角公式及其應(yīng)用事實(shí)上,由可得,因此,即(1)類似的,因?yàn)樗杂?,即?)(1),(2)兩個(gè)等式左邊、右邊分別相除,即可得(3)例1.求證:(1);(2)知識(shí)點(diǎn)1半角公式sineq\f(α,2)=,coseq\f(α,2)=,taneq\f(α,2)=,根號(hào)前的正負(fù)號(hào),由角eq\f(α,2)所在象限確定.推廣公式:taneq\f(α,2)==.練習(xí).求的值?!緦?duì)點(diǎn)快練】1.若cosα=eq\f(1,3),α∈(0,π),則coseq\f(α,2)的值為()A.eq\f(\r(6),3) B.-eq\f(\r(6),3)C.±eq\f(\r(6),3) D.±eq\f(\r(3),3)2.已知cosα=eq\f(4,5),α∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)π,2π)),則sineq\f(α,2)等于()A.-eq\f(\r(10),10) B.eq\f(\r(10),10)C.eq\f(3\r(3),10) D.-eq\f(3,5)例2.已知sinθ=eq\f(4,5),且eq\f(5π,2)<θ<3π,求coseq\f(θ,2)和taneq\f(θ,2).【變式練習(xí)】本例中將條件改為“π<θ<eq\f(3,2)π,且sinθ=-eq\f(4,5)”,如何求解?問(wèn)題2:積化和差和和差化積公式因?yàn)樗詢墒椒謩e相加、相減之后整理可得(4)(5)類似地,由可得:(6)(7)(4)(5)(6)(7)地左邊是積地形式,右邊是和或者差地形式,因此被稱為積化和差公式。根據(jù)(4)式可知,,因此可知的最大值為1.一般地,如果,則,從而(4),(5),(6),(7)可分別改寫(xiě)為:這四個(gè)公式左邊是和或差的形式,右邊是積的形式,因此被稱為和差化積公式。知識(shí)點(diǎn)2積化和差與和差化積公式(1)積化和差公式:sinαcosβ=eq\f(1,2)[sin(α+β)+sin(α-β)],cosαsinβ=eq\f(1,2)[sin(α+β)-sin(α-β)],cosαcosβ=eq\f(1,2)[cos(α+β)+cos(α-β)],sinαsinβ=-eq\f(1,2)[cos(α+β)-cos(α-β)].(2)和差化積公式:sinα+sinβ=2sineq\f(α+β,2)coseq\f(α-β,2),sinα-sinβ=2coseq\f(α+β,2)sineq\f(α-β,2),cosα+cosβ=2coseq\f(α+β,2)coseq\f(α-β,2),cosα-cosβ=-2sineq\f(α+β,2)sineq\f(α-β,2).【對(duì)點(diǎn)快練】1.sin15°cos165°的值是()A.eq\f(1,4) B.eq\f(1,2)C.-eq\f(1,4) D.-eq\f(1,2)2.把cos3a+cos5a化為積的形式,其結(jié)果為例2.求函數(shù)的周期與最大值?!咀兪骄毩?xí)1】求函數(shù)f(x)=sinxcoseq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,6)))的值域.【變式練習(xí)2】函數(shù)f(x)=sin2xcoseq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(π,6)))的單調(diào)遞減區(qū)間是____________.例3.求函數(shù)的周期和最大值?!咀兪骄毩?xí)1】函數(shù)y=cos2eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(π,12)))+sin2eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,12)))-1的最小正周期為_(kāi)___________.【變式練習(xí)2】函數(shù)y=cosx+c
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 16大家一起來(lái)合作(說(shuō)課稿)-2023-2024學(xué)年道德與法治一年級(jí)下冊(cè)統(tǒng)編版
- 福建省南平市文化武術(shù)學(xué)校高二語(yǔ)文下學(xué)期期末試題含解析
- 福建省南平市萬(wàn)安中學(xué)2020年高二英語(yǔ)下學(xué)期期末試卷含解析
- 2024版消防設(shè)計(jì)質(zhì)量問(wèn)題案例分析手冊(cè)建筑機(jī)電專業(yè)
- 2025年度石油化工設(shè)備采購(gòu)與施工安裝合同3篇
- 雙十一家居新機(jī)遇
- 15搭船的鳥(niǎo) 說(shuō)課稿-2024-2025學(xué)年語(yǔ)文三年級(jí)上冊(cè)統(tǒng)編版
- 勞動(dòng)節(jié)視角下的媒體變革
- 2024新能源汽車(chē)動(dòng)力電池供應(yīng)與技術(shù)服務(wù)合同
- 邁向新學(xué)期模板
- GB∕T 14527-2021 復(fù)合阻尼隔振器和復(fù)合阻尼器
- 隧道二襯、仰拱施工方案
- 顫?。ㄅ两鹕。┲嗅t(yī)護(hù)理常規(guī)
- 股權(quán)轉(zhuǎn)讓稅收政策PPT課件
- 果膠項(xiàng)目商業(yè)計(jì)劃書(shū)(模板范本)
- 旋挖鉆成孔掏渣筒沉渣處理施工工藝
- 安全資料目錄清單
- 集團(tuán)后備人才培養(yǎng)方案
- 黃金提煉提純及環(huán)保系統(tǒng)工程設(shè)計(jì)方案概要
- 兒童故事《逃家小兔》PPT
- 國(guó)家開(kāi)放大學(xué)電大本科《機(jī)電控制工程基礎(chǔ)》2023-2024期末試題及答案(試卷代號(hào):1116)
評(píng)論
0/150
提交評(píng)論