版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、學(xué)科教師輔導(dǎo)講義學(xué) 員 編 號(hào) : 年 級(jí) :初一 課 時(shí) 數(shù) : 學(xué) 員 姓 名 : 輔 導(dǎo) 科 目 :數(shù)學(xué) 學(xué) 科 教 師 :課 題一元一次方程課 型 預(yù)習(xí)課 同步課 復(fù)習(xí)課 習(xí)題課 專(zhuān)題課 授課日期及時(shí)段教學(xué)目標(biāo)1、了解一元一次方程的概念,理解等式的基本性質(zhì)。2、理解移項(xiàng)法則,會(huì)解一元一次方程。3、了解一元一次方程在解決問(wèn)題中的應(yīng)用教學(xué)內(nèi)容 一元一次方程復(fù)習(xí)提高要點(diǎn)一:方程及一元一次方程的相關(guān)概念方程的概念:含有未知數(shù)的等式叫做方程。一元一次方程的概念:方程兩邊都是整式,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是一次的方程叫做一元一次方程。其中“元”是指未知數(shù),“一元”是指一個(gè)未知數(shù);“次”是
2、指含有未知數(shù)的項(xiàng)的最高次數(shù),“一次”是指含有未知數(shù)的項(xiàng)的最高次數(shù)是一次。等式、方程、一元一次方程的區(qū)別和聯(lián)系:區(qū)別舉例聯(lián)系等式用等號(hào)連接的式子。3+2=5,x+1=0都是用等號(hào)連接的式子方程含有未知數(shù)的等式。X+1=0,x+y=2一元一次方程方程兩邊都是整式,只含有一個(gè)未知數(shù)并且未知數(shù)的指數(shù)是一次的方程。X+1=0,y+1=y方程的解的概念:使方程兩邊相等的未知數(shù)的值叫做方程的解。(1) 解方程的概念:求方程的解或判定方程無(wú)解的過(guò)程叫做解方程。(2) 判斷一個(gè)未知數(shù)的值是不是方程的解:將未知數(shù)的值代入方程,看左右兩邊的值是否相等,能使方程左右兩邊相等的味之素的值就是方程的解。否則就不是方程的解
3、。一元一次方程的解法解一元一次方程的一般步驟、注意點(diǎn)、基本思路。一般步驟注意點(diǎn)(1)去分母方程的每一項(xiàng)都要乘以最簡(jiǎn)公分母(2)去括號(hào)去掉括號(hào),括號(hào)內(nèi)的每項(xiàng)符號(hào)都要同時(shí)變或不變(3)移項(xiàng)移項(xiàng)要變號(hào)(4)合并同類(lèi)項(xiàng)只要把系數(shù)合并,字母和它的指數(shù)不變。(5)方程兩邊同除以未知數(shù)的系數(shù)相除時(shí)系數(shù)不等于0。若為0,則方程可能無(wú)解或有無(wú)窮多解。重點(diǎn)題型總結(jié)及應(yīng)用知識(shí)點(diǎn)一:一元一次方程的概念例1、 已知下列各式:2x51;871;xy;xyx2;3xy6;5x3y4z0;8;x0。其中方程的個(gè)數(shù)是()A、5B、6C、7D、8舉一反三:【變式1】判斷下列哪些方程是一元一次方程: (1)-2x2+3=x (2)
4、3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)【變式2】若關(guān)于的方程是一個(gè)一元一次方程,則_【變式3】若關(guān)于的方程是一元一次方程,則_【變式4】若關(guān)于的方程是一元一次方程,則_【變式5】若關(guān)于的方程是一元一次方程,則_【變式6】已知:(a3)(2a5)x(a3)y60是關(guān)于x的一元一次方程,則a=_知識(shí)點(diǎn)二:方程的解 題型一:已知方程的解,求未知常數(shù)例2、當(dāng)取何值時(shí),關(guān)于的方程的解為?舉一反三:已知(1)當(dāng)時(shí),求的值;(2)當(dāng)時(shí),求的值題型二:已知一方程的解,求另一方程的解例3、已知是關(guān)于的方程的解,解關(guān)于的方程:題型三:同解問(wèn)題例4、方程與的解相同,求的值.舉一反三:
5、【變式1】已知方程與方程的解相同(1) 求的值;(2)求代數(shù)式的值【變式2】已知方程與方程的解相同,求k 的值.【變式3】方程的解與關(guān)于x的方程的解互為倒數(shù),求k的值。題型四:已知方程解的情況,求未知常數(shù)的取值范圍例5、要使方程ax=a的解為1,則( )A.a可取任何有理數(shù) B.a0 C. a0 D.a0例6、關(guān)于x的方程ax+3=4x+1的解為正整數(shù),則a的值為( )A. 2 B. 3 C.1或2 D.2或3舉一反三:已知方程2ax=(a1)x+6,求a為何整數(shù)時(shí),方程的解是正整數(shù).知識(shí)點(diǎn)三:等式的性質(zhì)(方程變形解方程的重要依據(jù))注:分?jǐn)?shù)的基本的性質(zhì)主要是用于將方程中的小數(shù)系數(shù)(特別是分母中
6、的小數(shù))化為 ,如方程:=1.6,將其化為: =1.6。方程的右邊沒(méi)有變化,這要與“去分母”區(qū)別開(kāi)。例7、下列等式變形正確的是( )A.若,則 B. 若,則C.若,則 D. 若,則舉一反三:1、若,下列變形不一定正確的是( )A. B. C. D. 2、下列等式變形錯(cuò)誤的是( )A.由a=b得a+5=b+5 B.由a=b得6a=6b C.由x+2=y+2得x=y D.由x3=3y得x=y3、運(yùn)用等式性質(zhì)進(jìn)行的變形,正確的是( )A.如果a=b 那么a+c=b-c; B.如果6a=b-6 那么a=b; C.如果a=b 那么a3=b3 ; D.如果a2=3a 那么a=3 4、下列等式變形錯(cuò)誤的是(
7、 ) A.由a=b得a+5=b+5 B.由a=b得 C.由x+2=y+2得x=y D.由-3x=-3y得x=-y5、運(yùn)用等式性質(zhì)進(jìn)行的變形,正確的是( ) A.如果a=b,那么a+c=b-c; B.如果,那么a=b; C.如果a=b,那么; D.如果a2=3a,那么a=36、如果ma=mb,那么下列等式中不一定成立的是()A. ma+1=mb+1 B.ma3=mb3 C. a=b D. 7、運(yùn)用等式性質(zhì)進(jìn)行的變形,正確的是( )。 A.如果a=b,那么a+c=b-c; B.如果,那么a=b; C.如果a=b,那么 D.如果,那么a=3知識(shí)點(diǎn)四:解一元一次方程的一般步驟:例8、(用常規(guī)方法)解方
8、程:(非常規(guī)方法解方程)(一)巧湊整數(shù)解方程例9、解方程:思路點(diǎn)撥:仔細(xì)觀(guān)察發(fā)現(xiàn),含未知數(shù)的項(xiàng)的系數(shù)和為 ,常數(shù)項(xiàng)和為 ,故直接移項(xiàng)湊成 比先去分母簡(jiǎn)單。舉一反三:【變式】解方程:2x5(二)巧用觀(guān)察法解方程例10、解方程:(三)巧去括號(hào)法解方程含多層括號(hào)的一元一次方程,要根據(jù)方程中各系數(shù)的特點(diǎn),選擇適當(dāng)?shù)娜ダㄌ?hào)的方法,以避免繁雜的計(jì)算過(guò)程。例11、解方程:思路點(diǎn)撥:因?yàn)轭}目中分?jǐn)?shù)的分子和分母具有倍數(shù)關(guān)系,所以從 向 去括號(hào)可以使計(jì)算簡(jiǎn)單。舉一反三:【變式】解方程:(四)運(yùn)用拆項(xiàng)法解方程在解有分母的一元一次方程時(shí),可以不直接去分母,而是逆用分?jǐn)?shù)加減法法則,拆項(xiàng)后再合并,有時(shí)可以使運(yùn)算簡(jiǎn)便。例1
9、2、解方程:思路點(diǎn)撥:注意到_,這樣逆用分?jǐn)?shù)加減法法則,可使計(jì)算簡(jiǎn)便。(五)巧去分母解方程當(dāng)方程的分母含有小數(shù),而小數(shù)之間又沒(méi)有特殊的倍數(shù)關(guān)系時(shí),若直接去分母則會(huì)出現(xiàn)比較繁瑣的運(yùn)算。為了避免這樣的運(yùn)算。應(yīng)把分母化成整數(shù)?;麛?shù)時(shí),利用分?jǐn)?shù)的基本性質(zhì)將各個(gè)分子、分母同時(shí)擴(kuò)大相同的倍數(shù)即可。例13、解方程:1(六)巧組合解方程例14、解方程:思路點(diǎn)撥:按常規(guī)解法將方程兩邊同乘 化去分母,但運(yùn)算較復(fù)雜,注意到左邊的第一項(xiàng)和右邊的第 項(xiàng)中的分母有公約數(shù) ,左邊的第 項(xiàng)和右邊的第一項(xiàng)的分母有公約數(shù) ,移項(xiàng)局部通分化簡(jiǎn),可簡(jiǎn)化解題過(guò)程。(七)巧解含有絕對(duì)值的方程解含有絕對(duì)值的方程的基本思想是先去掉絕對(duì)值符
10、號(hào),轉(zhuǎn)化為一般的一元一次方程。對(duì)于只含一重絕對(duì)值符號(hào)的方程,依據(jù)絕對(duì)值的意義,直接去絕對(duì)值符號(hào),化為兩個(gè)一元一次方程分別解之,即若|x|m,則_。例15、解方程:|x2|30解法一: 解法二:舉一反三:【變式1】5|x|163|x|4【變式2】 解一元一次方程常用的技巧有:(1)有多重括號(hào),去括號(hào)與合并同類(lèi)項(xiàng)可交替進(jìn)行。(2)當(dāng)括號(hào)內(nèi)含有分?jǐn)?shù)時(shí),常由外向內(nèi)先去括號(hào),再去分母。(3)當(dāng)分母中含有小數(shù)時(shí),可用分?jǐn)?shù)的基本性質(zhì)化成整數(shù)。(4)運(yùn)用整體思想,即把含有未知數(shù)的代數(shù)式看作整體進(jìn)行變形。知識(shí)點(diǎn)五:理解方程ax=b在不同條件下解的各種情況,并能進(jìn)行簡(jiǎn)單應(yīng)用題型一:方程有唯一解例16、若(3a+2b)x2+ax+b=0是關(guān)于x的一元一次方程,且x有唯一解,求這個(gè)解.題型二:方程有無(wú)數(shù)解例17、關(guān)于x的方程3x4=abx有無(wú)窮多個(gè)解,則a. b的值應(yīng)是( )A. a=4, b=3 B.a=4, b=3 C. a=4 , b=3 D.a .b可取任意數(shù)題型三:方程無(wú)解例18、已知關(guān)于x的方程無(wú)解,則a的值是( ) A.1 B.-1 C.1 D.不等于1的數(shù)舉一反三:1、已知關(guān)于x的方程a(2x-1)=3x-2無(wú)解,試求a的值2、若關(guān)于x的方程 2x1 +m=0無(wú)解,則m=_.3.(1)關(guān)于x的方程4k(x+2)1=2x無(wú)解,求k的值; (2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國(guó)移動(dòng)黑龍江公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 商務(wù)、清洗服務(wù)行業(yè)相關(guān)投資計(jì)劃提議
- 2025中國(guó)電建集團(tuán)武漢重工裝備限公司招聘14人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)電信湖北神農(nóng)架林區(qū)招聘7人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)建筑股份限公司海拓工程分公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)華西企業(yè)限公司招聘221人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中共中山市委黨校第六期招聘高層次人才9人(2025年)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年陜西延安市事業(yè)單位招聘工作人員385人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025下半年山東高速基礎(chǔ)設(shè)施建設(shè)限公司社會(huì)招聘6人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025上海徐匯市場(chǎng)監(jiān)督管理局招聘派遣制工作人員15人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 常見(jiàn)雞病防治課件
- 220kv升壓站質(zhì)量評(píng)估報(bào)告
- 4-72系列風(fēng)機(jī)使用說(shuō)明書(shū)
- 運(yùn)籌學(xué)課程設(shè)計(jì)
- 花鍵跨棒距的計(jì)算
- 國(guó)家開(kāi)放大學(xué)《C語(yǔ)言程序設(shè)計(jì)》形考任務(wù)1-4參考答案
- 北京市海淀區(qū)2021-2022學(xué)年七年級(jí)上學(xué)期期末考試語(yǔ)文試卷(word版含答案)
- 低濃度顆粒物的測(cè)定重量法方法驗(yàn)證報(bào)告
- 百家姓全文拼音版A4打印
- 日本簽證在職證明
- IPC標(biāo)準(zhǔn)解析學(xué)習(xí)課程
評(píng)論
0/150
提交評(píng)論