19.2.1 正比例函數(shù)(1).ppt_第1頁
19.2.1 正比例函數(shù)(1).ppt_第2頁
19.2.1 正比例函數(shù)(1).ppt_第3頁
19.2.1 正比例函數(shù)(1).ppt_第4頁
19.2.1 正比例函數(shù)(1).ppt_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、學(xué)習(xí)目標(biāo): 1知道正比例函數(shù)的概念; 2會用正比例函數(shù)解析式表示函數(shù)關(guān)系,19.2.1正比例函數(shù)(1),2011年開始運(yùn)營的京滬高速鐵路全長1 318km. 設(shè)列車平均速度為300km/h.考慮以下問題: (1)乘京滬高速列車,從始發(fā)站北京南站到 終點(diǎn)站海虹橋站,約需要多少小時(結(jié)果保留 小數(shù)點(diǎn)后一位)?13183004.4(h),(2)京滬高鐵列車的行程y(單位:km)與運(yùn)行時間t(單位:h)之間有何數(shù)量關(guān)系? y=300t(0t4.4),(3)京滬高鐵列車從北京南站出發(fā)2.5 h后,是否已經(jīng)過了距始發(fā)站1 100 km的南京站? y=3002.5=750(km), 這是列車尚未 到 達(dá) 距

2、 始 發(fā) 站 1 100km的南京站.,思考下列問題: y=300t中,變量和常量分別是什么?其對應(yīng)關(guān)系式是函數(shù)關(guān)系嗎?誰是自變量,誰是函數(shù)?,2、這個問題中得到的函數(shù)解析式有什么特 點(diǎn)? 3、函數(shù)值與對應(yīng)的自變量的值的比有什么 特點(diǎn)?,問題2下列問題中,變量之間的對應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,請寫出函數(shù)解析式 (1)圓的周長 l 隨半徑 r 的變化而變化; (2)鐵的密度為7.8 g/cm3,鐵塊的質(zhì)量 m(單位:g)隨它的體積 V(單位:cm3)的變化而變化;,(3)每個練習(xí)本的厚度為0.5 cm,練習(xí)本摞在一起的總厚度 h(單位:cm)隨練習(xí)本的本數(shù) n 變化而變化; (4)冷凍一個0

3、的物體,使它每分下降2 ,物體的溫度 T(單位:)隨冷凍時間 t(單位:min)的變化而變化,觀察這四個函數(shù)解析式,說說這些函數(shù)有什么共同點(diǎn),一般地,形如 y=kx(k 是常數(shù),k0)的函數(shù),叫做正比例函數(shù),其中k 叫做比例系數(shù),這個函數(shù)表達(dá)式在形式上一個單項式還是多項式?你能指出它的系數(shù)是什么?次數(shù)為多少? 形式上是一個一次單項式,單項式系數(shù)就是比例系數(shù)k,練習(xí):,1.下列式子,哪些表示y是x的正比例函數(shù)?如果是,請你指出正比例系數(shù)k的值 (1)y=-0.1x (2) (3)y=2x2 (4)y2=4x (5)y=-4x+3 (6)y=2(xx2 )+2x2,是正比例函數(shù), 正比例系數(shù)為-0

4、.1,是正比例函數(shù), 正比例系數(shù)為0.5,不是正比例函數(shù),不是正比例函數(shù),不是正比例函數(shù),是正比例函數(shù),正比例系數(shù)為2,判定一個函數(shù)是否是正比例函數(shù), 要從化簡的結(jié)果來判斷!,2.列式表示下列問題中y與x的函數(shù)關(guān)系,并指出哪些是正比例函數(shù) (1)正方形的邊長為xcm,周長為ycm. y=4x 是正比例函數(shù) (2)某人一年內(nèi)的月平均收入為x元,他這年(12個月)的總收入為y元 y=12x 是正比例函數(shù) (3)一個長方體的長為2cm,寬為1.5cm,高為xcm ,體積為ycm3. y=3x 是正比例函數(shù),下列說法正確的打“”,錯誤的打“” (1)若y=kx,則y是x的正比例函數(shù)( ) (2)若y=

5、2x2,則y是x的正比例函數(shù)( ) (3)若y=2(x-1)+2,則y是x的正比例函數(shù) ( ) (4)若y=2(x-1) ,則y是x-1的正比例函數(shù) ( ),在特定條件下自變量可能不單獨(dú)就是 了,要注意自變量的變化,1.如果y=(k-1)x,是y關(guān)于x的正比例函 數(shù),則k滿足_. 2.如果y=kxk-1,是y關(guān)于x的正比例函 數(shù),則k=_. 3.如果y=3x+k-4,是y關(guān)于x的正比例函 數(shù),則k=_.,k1,2,4,1.已知正比例函數(shù)y=kx,當(dāng)x=3時, y=-15,求k的值 2.若y關(guān)于x成正比例函數(shù),當(dāng)x=4時,y=-2. (1)求出y與x的關(guān)系式; (2)當(dāng)x=6時,求出對應(yīng)的函數(shù)值

6、y.,k=-5,y= -0.5x,y= -3,課堂小結(jié),你如何理解正比例函數(shù)的意義?能從哪幾個方面去認(rèn)識正比例函數(shù)? 1.從語言描述看: 函數(shù)關(guān)系式是常量與自變量的乘積 2.從外形特征看: (1)一般情況下y=kx(常數(shù)k0); (2)在特定條件下自變量可能不單獨(dú)是x了,要注意問題中自變量的變化. 3.從結(jié)果形式看: 函數(shù)表達(dá)式要化簡后才能確認(rèn)為正比例函數(shù),4.從函數(shù)關(guān)系看: 比例系數(shù)k一確定,正比例函數(shù)就確定;必須知道兩個變量x、y的一對對應(yīng)值即可確定k 5.從方程角度看: 如果三個量x、y、k中已知其中兩個量,則一定可以求出第三個量,當(dāng)堂檢測,1.下列函數(shù)是正比例函數(shù)的是( ) A.y=2

7、x+1 B.y=8+2(x-4) C.y=2x2 D.y= 2.下列問題中的y與x成正比例函數(shù)關(guān)系的是( ) A.圓的半徑為x,面積為y B.某地手機(jī)月租為10元,通話收費(fèi)標(biāo)準(zhǔn)為0.1元/min,若某月通話時間為x min,該月通話費(fèi)用為y元 C. 把10本書全部隨意放入兩個抽屜內(nèi), 第一個抽屜放入x本,第二個抽屜放入y本 D.長方形的一邊長為4,另一邊為x,面積為y,3.關(guān)于y= 說法正確的是( ) A.是y關(guān)于x的正比例函數(shù),正比例系數(shù)為-2 B.是y關(guān)于x的正比例函數(shù),正比例系數(shù)為 C.是y關(guān)于x+3的正比例函數(shù),正比例系數(shù)為-2 D.是y關(guān)于x+3的正比例函數(shù),正比例系數(shù)為 4.若y=

8、kx+2k-3是y關(guān)于x的正比例函數(shù),則k=_. 5.若y=(k-2)x是y關(guān)于x的正比例函數(shù),則k滿足的條件是_. 6.已知y關(guān)于x成正比例函數(shù),當(dāng)x=3時,y=-9,則y與x的關(guān)系式為_.,問題: 1、正比例函數(shù)y=kx(常數(shù)k0)的自變量x的取值范圍是什么? 一般情況下正比例函數(shù)自變量取值范圍為一切實(shí)數(shù),但在特殊情況下自變量取值范圍會有所不同 2、如何理解y與x成正比例函數(shù)? 反之,y=kx(k為常數(shù), k0)表示什么意義? y與x成正比例函數(shù) y=kx(常數(shù)k0),3.在正比例函數(shù)y=kx(k為常數(shù),k0)中關(guān)鍵是確定哪個量?比例系數(shù)k一經(jīng)確定,正比例函數(shù)確定了嗎?怎樣確定k呢? 從函數(shù)關(guān)系看,關(guān)鍵是比例系數(shù)k,比例系數(shù)k一確定,正比例函數(shù)就確定了;只需知道兩個變量x、y的一對對應(yīng)值即可確

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論