版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1,光纖布拉格光柵,Fiber Bragg Gratings 國立中山大學(xué) 電機(jī)工程研究所 林武文教授 2006.11.1,2,Ref: Andreas Othonos alignment stability is critical which reduces portability.,27,7.3.1.1 Passive Broadband Interrogation,(7.6),This system offer several advantages - low cost - ease of use - low resolution,28,7.3.1.1 Passive Broadband
2、 Interrogation,29,7.3.1.2 Ratiometric Detection with a WDM Fiber Coupler,All fiber approaches such as fiber WDM fused-tapered couplers provides a monotonic change in the coupling ratio between the two output ports. (ref.Fig.7.2(b) Advantages: (All-fiber type) - low power loss - low cost - 1% accurac
3、y,30,7.3.1.3 Interrogation via Scanning Optical Filter,The demodulated output is the convolution of the tunable filter spectrum with that of the grating. (ref.Fig.7.1(b).and the output is optimized when the spectrum of the tunable filter matches that of the grating.,31,7.3.1.3 Interrogation via Scan
4、ning Optical Filter,Drawback of the use of narrowband SOF - sampling a narrow slice of the optical spectrum at a given time. the measured resolution is strongly dependent on S/N of the return signal and the line widths of the tunable filter and FBG.,32,7.3.1.3 Interrogation via Scanning Optical Filt
5、er, Repeated scanning of a grating array at a freq f results in an energy reflected by each grating per sampling period that is equal to,(7.7),Where R: the grating reflectivity. I: the spectral brightness of the source : the gratings spectral width.,33,7.3.1.3 Interrogation via Scanning Optical Filt
6、er,(7.8),The scanning filter further limits the detection energy,Where : the filter bandwidth : the width of the scanned wavelength range.,34,7.3.1.3 Interrogation via Scanning Optical Filter,(1)Tunable Wavelength Fiber Fabry-Derot Filter (FPF) - used in optical fiber communication system to remove
7、ASE (amplified spontaneous emission) noise emanating from EDFA.,35,7.3.1.3 Interrogation via Scanning Optical Filter,(2)Tunable Fiber Bragg Grating Filters (3) Acoustic-Optic Tunable Filter (4) Other Tunable Filter Types,36,7.3.1.3 Interrogation via Scanning Optical Filter,(1)Tunable Wavelength Fibe
8、r Fabry-Derot Filter The characteristics of the filters - band pass resonance of Lorentzian line shapes - bandwidth (BW)0.3nm. Fig.7.3 shows how a funable filter is used. 2 operating schemes - Tracking (closed-loop) mode (for 1 FBG) - scanning mode (for 2 or-mol FBG),37,7.3.1.3 Interrogation via Sca
9、nning Optical Filter,38,7.3.1.3 Interrogation via Scanning Optical Filter,(1)Tunable Wavelength Fiber Fabry-Derot Filter Fig 7.4 Compares the strain monitored with a scanning filter demodulated grating and resistive strain gauge (RSG) when both are subject to a strain level ,with resolutions of for
10、a BW from DC360Hz.,39,7.3.1.3 Interrogation via Scanning Optical Filter,40,7.3.1.3 Interrogation via Scanning Optical Filter,(1)Tunable Wavelength Fiber Fabry-Derot Filter Fig.7.5 (inset) shows the output of one sensor subject to sine-wave modulation of periodicity of 2 minutes.,41,7.3.1.3 Interroga
11、tion via Scanning Optical Filter,42,7.3.1.3 Interrogation via Scanning Optical Filter,(2) Tunable FBG filters (TBGF) - by Jackson et al. (ref.Fig.7.6) - A reflectrometric FBG based tunable filter scheme. modified by Brady et al the parallel topology by using a series array of receiving grating. - a
12、reflect metric approach. - Advantage (1)more efficient. (2)reduce system components.,43,7.3.1.3 Interrogation via Scanning Optical Filter,44,7.3.1.3 Interrogation via Scanning Optical Filter,(2) Tunable FBG filters (TBGF) - by Davis et. al. (ref.Fig.7.7) - using the receiving gratings in an efficien
13、t Xmissive mode Minimize the effect of light loss. Improving sensor sensitivity.,45,7.3.1.3 Interrogation via Scanning Optical Filter,46,7.3.1.3 Interrogation via Scanning Optical Filter,(3) Acoustic-Optic Tunable Filters (AOTF) - is a solid-state optical filter - the wavelength of the diffracted li
14、ght is selected by RF. - large tuning range - fast access time, 5kHz - narrow spectral bandwidth.,47,7.3.1.3 Interrogation via Scanning Optical Filter,48,7.3.1.3 Interrogation via Scanning Optical Filter,- AOTF is attractive for wavelength multiplexing very large Bragg grating arrays with the provis
15、o that a suitable broadband source , or array sources is available. - Suitable for optical fiber.,49,7.3.1.3 Interrogation via Scanning Optical Filter,(7.9),For a given grating and AOTF bandwidth there is an ideal freq derivation for maximizing the tracking error signal given by,Where is the AOTF ba
16、ndwidth. Note (7.9) is independent of the filter Xmission ,grating reflectivity, and intensity noise.,50,7.3.1.3 Interrogation via Scanning Optical Filter,One of the notable advantages of the AOTF over all other filters is the possibility of driving the device at multiple RF signals to allow for tru
17、e parallel processing of multiple wavelength signals using a single filter and detector. Volanthen ef al. demo the monitoring of 2 FBG written at 1300 and 1550 nm using a ATOF. (ref. Fig.7.9),51,7.3.1.3 Interrogation via Scanning Optical Filter,圖7.9,52,7.3.1.4 Bragg Grating Interrogation Using Wavel
18、ength Tunable Source,Advantage - To improve S/N as the measurement defermines a max in grating reflected power and it dispenses with the need for optical filtering.,53,7.3.1.5 Recovery of Bragg Grating Wavelength Shift Using CCD Spectrometer,54,7.3.1.5 Recovery of Bragg Grating Wavelength Shift Usin
19、g CCD Spectrometer,(7.10),(7.11),Peak-Wavelength-Detection Algorithms. The ceutroid detection algorithm (CDA) use Eq(710) to get,Where are the intensity and center wavelength of the CCD pixel.,Where (ref. Fig.7.11(a) ),55,7.3.1.5 Recovery of Bragg Grating Wavelength Shift Using CCD Spectrometer,56,7
20、.3.1.6 Analysis of Bragg Grating Wavelength Shift Using Fourier Transform Spectroscopy,Fourier transform spectroscopy (FTS) - by Davis ,where,and system loss,is the imbalance length between fiber arms,is the reflected wavelength from FBG,is the interference fringe visibility,is a bias phase offset o
21、f the MZI resetting from slowly varying as the tamp rises , strain on the grating is progressively released.,85,7.4.2 Extrinsic Temperature Compensation,2. Packaging the FBG in a liquid crystalline polymer has resulted in an improvement in temp stability by a factor of 10. 3. A cantilever is used wi
22、th 2 FBG mounted on opposite surface, with one grating stretched while the other is compressed. Here ,the difference in the Bragg grating wavelengths is temp. independent because both Bragg gratings have the same temp sensitivity.,86,7.4.3 Intrinsic Temperature Compensation,7.4.3.1 Reference Grating
23、 7.4.3.2 Tapered Grating 7.4.3.3 Dual-Wavelength Superimposed Gratings 7.4.3.4 Multiple Bragg Grating Orders 7.4.3.5 Simultaneous Measurement of Temperature and Strain Using PANDA 7.4.3.6 Gratings in Dissimilar Diameter Fibers,87,7.4.3 Intrinsic Temperature Compensation,7.4.3.7 Hybrid Bragg Grating/
24、Long Period Grating 7.4.3.8 Superimposed Gratings and Polarization-Rocking Filters 7.4.3.9 Bragg Gratings and Brillouin Scattering 7.4.3.10 Combined Grating and In-Line/Extrinsic Fiber Etalon Sensor Methods 7.4.3.11 Bragg Grating Strain Rosettes 7.4.3.12 Dual-Core Fiber Bragg Gratings,88,7.4.3 Intri
25、nsic Temperature Compensation,(7.26),89,7.5 Polarization Stability of Interrogation Schemes,Ecke et al. have found that laterally compressing or bending a fiber lead produces dynamical changes due to polarization-mode conversion, resulting in severe noise and systematic errors. Fig.7.21 shows that f
26、or a simple broadband source and spectrometer-CCD arrangement, the passive Lyon depolarizer gives a dramatic improvement to the system stability, reducing wavelength errors to less then 1pm.,90,7.5 Polarization Stability of Interrogation Schemes,91,7.6 Multiplexing Techniques,7.6.1 Wavelength Divisi
27、on Multiplexing (WDM) 7.6.2 Time Division Multiplexing (TDM) 7.6.3 Spatial Division Multiplexing (SDM) 7.6.4 Combined SDM/WDM/TDM,92,7.6 Multiplexing Techniques,By sharing the source and processing electronics. - the cost per sensor is reduced. - reduces the overall system weight while enhancing dur
28、ability. For FOS - SDM (spatial Division Multiplexing ) - TDM - FDM - WDM - CDM (coherence domain multiplexing),93,7.6 Multiplexing Techniques,Limited to 10 FOS ,due to - speed - crosstalk - S/N - bandwidth,94,7.6.1 Wavelength Division Multiplexing (WDM),7.6.1.1 Parallel and Serial WDM Topologies 7.
29、6.1.2 WDM Schemes with Tunable Filters 7.6.1.3 Combined WDM and Interferometric Detection,95,7.6.1.1 Parallel and Serial WDM Topologies,- WDM encodes each BGS with a unique slice of the available source spectrum , which defines the sensors operating rouge and is also associated with a specific spati
30、al location along the optical fiber. Advantage- - The physical spacing between individual gratings may be as short as desired and the need for high-speed electrical signal processing, as is often required in TDM, is removed.,96,7.6.1.1 Parallel and Serial WDM Topologies,97,7.6.1.1 Parallel and Seria
31、l WDM Topologies,98,7.6.2 Time Division Multiplexing (TDM),7.6.2.1 Combined TDM and Interferometric Detection 7.6.2.2 TDM and WDM,99,7.6.2 Time Division Multiplexing (TDM),100,7.6.3 Spatial Division Multiplexing (SDM),7.6.3.1 SDM and WDM 7.6.3.2 SDM and TDM,101,7.6.3 Combined SDM/WDM/TDM,- The seria
32、l multiplexing schemes of WDM & TDM and combination make efficient use of the source power.,102,7.6.4 Combined SDM/WDM/TDM,103,7.7 Sensors Based on Chirped Bragg Gratings,7.7.1 Broadband Chirped Grating Sensor 7.7.2 Tapered Chirped Grating Sensor 7.7.3 Asymmetrically Chirped Grating Sensor 7.7.4 Int
33、ragrating Sensing,104,7.7.1 Broadband Chirped Grating Sensor,105,7.7.1,(7.27),106,7.7.2 Tapered Chirped Grating Sensor,107,108,7.7.3 Asymmetrically Chirped Grating Sensor,109,7.7.3 Asymmetrically Chirped Grating Sensor,110,7.7.4 Intragrating Sensing,7.7.4.1 Intensity Reflection Spectrum Analysis 7.7
34、.4.2 Intragrating Sensing Through Phase Measurement 7.7.4.3 Combined Reflection Spectrum and Phase Measurement 7.7.4.4 Low Coherence Reflectivity Measurement,111,7.7.4.1 Intensity Reflection Spectrum Analysis,(7.28),(7.29),112,7.7.4.1 Intensity Reflection Spectrum Analysis,113,7.7.4.2 Intragrating S
35、ensing Through Phase Measurement,(7.30),(7.31),114,7.7.4.2 Intragrating Sensing Through Phase Measurement,115,7.7.4.3 Combined Reflection Spectrum and Phase Measurement,116,7.7.4.3 Combined Reflection Spectrum and Phase Measurement,117,7.7.4.4 Low Coherence Reflectivity Measurement,118,7.7.4.4 Low C
36、oherence Reflectivity Measurement,119,7.8 Distinguishing Bragg Grating Strain Effects,(7.32),(7.33),The reflection distribution from a grating experiencing a general strain state is given by,With are given by,Where are the time averaged scalar magnitudes of the square of the electric fields in x and
37、 y direction.,120,7.8 Distinguishing Bragg Grating Strain Effects,(7.34a),(7.34b),For a grating experiencing the most general thermo- mechanical strain conditions, the change in the reflection wavelength is given by,Where the component of the light with its polarization Vector in x and y direction.,
38、121,7.8 Distinguishing Bragg Grating Strain Effects,122,7.9 Bragg Grating Fiber Laser Sensors,7.9.1 Single and Multipoint Bragg Grating Laser Sensors 7.9.2 Ultra-High Resolution Bragg Grating Laser Sensors Demodulation,123,7.9 Bragg Grating Fiber Laser Sensors,FBG may also be used as narrowband refl
39、ector for forming in-fiber laser cavities. The basic FBG laser sensor employs 2 Bragg grating of matched wavelength to create an in-fiber cavity or one grating combined with a broadband reflector with Er-doped fiber as the usual gain medium. ref.Fig.7.32,124,7.9.1 Single and Multipoint Bragg Grating
40、 Laser Sensors,125,7.9.1 Single and Multipoint Bragg Grating Laser Sensors,126,7.9.1 Single and Multipoint Bragg Grating Laser Sensors,(7.35),127,7.9.1 Single and Multipoint Bragg Grating Laser Sensors,128,7.9.2 Ultra-High Resolution Bragg Grating Laser Sensors Demodulation,(7.36),129,7.9.2 Ultra-Hi
41、gh Resolution Bragg Grating Laser Sensors Demodulation,130,7.9.2 Ultra-High Resolution Bragg Grating Laser Sensors Demodulation,131,7.10 Bragg Gratings as Interferometric Sensors and Reflective Markers,7.10.1 Reflectometric Sensing Arrays Using Bragg Reflectors 7.10.2 Nested Fiber Interferometers Us
42、ing Bragg Reflectors 7.10.3 Bragg Grating-Based Fabry-Perot Sensors 7.10.4 Collocated Fabry-Perot Cavities with Wavelength Addressable Cavity Lengths,132,7.10.1 Reflectometric Sensing Arrays Using Bragg Reflectors,133,7.10.1 Reflectometric Sensing Arrays Using Bragg Reflectors,134,7.10.2 Nested Fibe
43、r Interferometers Using Bragg Reflectors,(7.37),(7.38),Interrogation of the,The phase at the jth,135,7.10.2 Nested Fiber Interferometers Using Bragg Reflectors,136,7.10.3 Bragg Grating-Based Fabry-Perot Sensors,137,7.10.4 Collocated Fabry-Perot Cavities with Wavelength Addressable Cavity Lengths,138
44、,7.10.4 Collocated Fabry-Perot Cavities with Wavelength Addressable Cavity Lengths,139,7.11 Other Bragg Sensor Types,New specially modified or tailored gratings - - phase shift devices - multimode gratings - superstructure gratings,140,7.12 Applications of Bragg Grating Sensors,7.12.1 Introduction t
45、o Aerospace Applications 7.12.2 Bragg Grating Sensors in Marine Applications 7.12.3 Applications to Civil Engineering Structural Monitoring 7.12.4 Bragg Grating for Medical Applications,141,7.12 Applications of Bragg Grating Sensors,7.12.5 Bragg Sensors Within the Nuclear Power Industry 7.12.6 Appli
46、cations to Power Transmission Lines 7.12.7 Other Applications,142,7.12.1 Introduction to Aerospace Applications,- Monitoring Reinforced carbon Fiber Composite - Adaptive Structure - Application to Gas Turbine Engines,143,7.12.1 Introduction to Aerospace Applications,144,7.12.1 Introduction to Aerospace Applications,145,7.12.1 Introduction to Aerospace Applications,146,7.12.1 Introduction to Aerospace Applications,147,7.12.1 Introduction to Aerospace Applications,148,7.12.1.2 Space Vehicular Ultization,149,7.12.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度民間借貸論文跨文化比較與研究合同
- 2025-2030年圖書館靜音管理機(jī)器人企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年呼吸系統(tǒng)疾病治療儀行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 2025-2030年戶外輕食凍干意面企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年發(fā)光卡牌夜間對戰(zhàn)企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年投影儀鏡頭清潔套裝行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 二零二五年度門店知識產(chǎn)權(quán)保護(hù)合作協(xié)議
- 批發(fā)行業(yè)互聯(lián)網(wǎng)+的商業(yè)模式創(chuàng)新考核試卷
- 2025-2030年廚電產(chǎn)品AR展示企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年咖啡專用保溫壺企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 高中體育與健康-足球-腳內(nèi)側(cè)傳球射門技術(shù)(第二課時(shí))教學(xué)課件設(shè)計(jì)
- 2023年新改版教科版科學(xué)三年級下冊活動手冊參考答案(word可編輯)
- 《淄博張店區(qū)停車問題治理現(xiàn)狀及優(yōu)化對策分析【開題報(bào)告+正文】15000字 》
- 常用電子元器件基礎(chǔ)知識演示
- GB/T 32918.4-2016信息安全技術(shù)SM2橢圓曲線公鑰密碼算法第4部分:公鑰加密算法
- 2023年藥事法規(guī)教學(xué)案例庫及案例分析
- 北京市水務(wù)安全生產(chǎn)風(fēng)險(xiǎn)評估指南
- 吸引器教學(xué)講解課件
- 醫(yī)學(xué)心理學(xué)人衛(wèi)八版66張課件
- 仿古建筑施工常見質(zhì)量通病及防治措施
- 普通沖床設(shè)備日常點(diǎn)檢標(biāo)準(zhǔn)作業(yè)指導(dǎo)書
評論
0/150
提交評論