基因芯片的數(shù)據(jù)挖掘Data Mining of GeneChips_ppt_第1頁
基因芯片的數(shù)據(jù)挖掘Data Mining of GeneChips_ppt_第2頁
基因芯片的數(shù)據(jù)挖掘Data Mining of GeneChips_ppt_第3頁
基因芯片的數(shù)據(jù)挖掘Data Mining of GeneChips_ppt_第4頁
基因芯片的數(shù)據(jù)挖掘Data Mining of GeneChips_ppt_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

基因芯片的數(shù)據(jù)挖掘 Data Mining of GeneChips,Devang Shah INT3470 Course Project March 14, 2002,Outline,Background Molecular Biology 101 GeneChip Technology Synthesis, Sample Preparation, Scanning Data Flow and Management Multidrug Resistance Preliminary Data Analysis Affymetrix Microarray Suite 5.0 Scoring and Composite Analysis Statistical Algorithms (Absolute/Comparison Analysis) Data Mining Tool 2.0 (Preview) SOM Algorithm Correlation Coefficient Clustering,Molecular Biology 101,A - T G - C Traditional methods result in “one gene at one time” analysis The need for higher throughput has led to the development of two (competing) technologies,cDNA Spotted Array,cDNA Microarrays utilize various technologies (spotting, piezoelectric, drop-touch) to create arrays of entire genomes using 500-5000 bp oligos representing entire genes Microarrays are scanned using laser microscopy with fluorescent labeled DNA,GeneChip Technology,Utilizes photolithography and combinatorial chemistry to synthesize microarrays consisting of 25mer oligos representing smaller regions of various genes Probe Cell (PM or MM) Probe Pair (PM + MM) Probe Set ( 18 Pairs) Typical experiment involves isolation of mRNA, synthesis of cDNA, fragmentation, labeling , and hybridization Scan results in a raw data file (*.CHP),Data Management,Nat Genet 1999 Jan;21(1 Suppl):51-5 Gene expression informatics-its all in your mine. Bassett DE Jr, Eisen MB, Boguski MS,Use in Functional Genomics,Antimicrobial resistance in bacteria Multi-drug pumps (MDRs) Facilitate extrusion of amphipathic cations (toxic) TolC (E. coli), NorA (S. aureus),Evolutionary paradigm: Why do plants continue to produce amphipathic compounds if they are extruded? Perhaps they produce MDR inhibitors that when combined with these normally ineffective antimicrobials provide a strong synergistic effect,Methods,E. coli TolC mutants were challenged with these compounds for several hours and then assayed for gene expression,S. aureus (WT + NorA Mutant) susceptibility to various plant derived compounds were tested in the presence of 5-methoxyhydnocarpin (MDR inhibitor) and potential antimicrobials isolated,Lewis et al. (2000) Proc. Natl. Acad. Sci. USA 97:1433-1437.,Preliminary Data Analysis,Average probe cell intensity is calculated based upon the 75th percentile of 36 pixels An Absolute Call is based on a decision matrix employing the Positive Fraction, Pos/Neg Ratio, and Log Average Ratio Background is calculated from 1 of 16 sectors where the lowest 2% of probe cells are averaged and subtracted from the all probes within that sector Noise (Q) is calculated from the cells used in the background calculation,Comparison Analysis,Global Normalization Multiplying the average intensity of the experimental file by a NF resulting in the same average intensity as the baseline Global Scaling Multiplying BOTH data sets by SFs resulting in average intensities equal to a target intensity set by the user Fold Change,Results,TolC + Coumestrol,Cluster Analysis,Cluster analysis helps identify gene expression patterns in large data sets and groups with similar expression profiles Affymetrix DMT offers 2 methods Self Organizing Map (SOM) (Tamayo et. al., PNAS 1999) Centroid/ K-means Analysis (Golub et. al., Science 1999) Correlation Coefficient Clustering Other methods Hierarchical Agglomeration (Eisen et. al., PNAS 1998) Super-Paramagnetic (Getz et. al., Physica A 2000),SOM Clustering,Iterative process based on a number of genes (points) in k experiments (dimensions) Initially a grid of centroids is placed onto the k-dimensional space The number of centroids, each representing a cluster, is determined by the number of rows or columns set by the user (i.e. 3x2=6) The algorithm then adjusts the centroid position towards clusters of points (two-dimensional) Each iteration moves the centroid closer to the target point(s),N= the node being updated P= the data point being considered fi(N) = position of N at iteration i Np= the target node = distance N moves toward P,SOM Clustering,SOM Clustering,Ref. Gaddy Getz, Weizmann Institute, Israel,SOM Clustering,Ref. Gaddy Getz, Weizmann Institute, Israel,SOM Clustering,Ref. Gaddy Getz, Weizmann Institute, Israel,SOM Clustering,Ref. Gaddy Getz, Weizmann Institute, Israel,Correlation Coefficient,(X,Y)m= mean Avg Diff for probe sets across all analyses (X,Y)i= mean Avg Diff for probe set from analysis i can range from 1 to +1,Example of Clustering,Nat Genet 1999 Jan;21(1 Suppl):51-5 Gene expression informatics-its all in your mine. Bassett DE Jr, Eisen MB, Boguski MS,Conclusions,SOM Clustering Faster than most other clustering a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論