高中數(shù)學(xué) 3.3.2《簡單的線性規(guī)劃問題(1)》導(dǎo)學(xué)案 新人教A版必修5.doc_第1頁
高中數(shù)學(xué) 3.3.2《簡單的線性規(guī)劃問題(1)》導(dǎo)學(xué)案 新人教A版必修5.doc_第2頁
高中數(shù)學(xué) 3.3.2《簡單的線性規(guī)劃問題(1)》導(dǎo)學(xué)案 新人教A版必修5.doc_第3頁
高中數(shù)學(xué) 3.3.2《簡單的線性規(guī)劃問題(1)》導(dǎo)學(xué)案 新人教A版必修5.doc_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

3.3.2 簡單的線性規(guī)劃問題(1)導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 1 鞏固二元一次不等式和二元一次不等式組所表示的平面區(qū)域;2 能根據(jù)實(shí)際問題中的已知條件,找出約束條件.【重點(diǎn)難點(diǎn)】教學(xué)重點(diǎn):用圖解法解決簡單的線性規(guī)劃問題;教學(xué)難點(diǎn):準(zhǔn)確求得線性規(guī)劃問題的最優(yōu)解;【知識(shí)鏈接】閱讀課本至的探究找出目標(biāo)函數(shù),線性目標(biāo)函數(shù),線性規(guī)劃,可行解,可行域的定義【學(xué)習(xí)過程】 學(xué)習(xí)探究在生活、生產(chǎn)中,經(jīng)常會(huì)遇到資源利用、人力調(diào)配、生產(chǎn)安排的等問題,如:某工廠有a、b兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一件甲產(chǎn)品使用4個(gè)a配件耗時(shí)1h,每生產(chǎn)一件乙產(chǎn)品使用4個(gè)b配件耗時(shí)2h,該廠每天最多可從配件廠獲得16個(gè)a配件和12個(gè)b配件,按每天8h計(jì)算,該廠所有可能的日生產(chǎn)安排是什么?(1)用不等式組表示問題中的限制條件:設(shè)甲、乙兩種產(chǎn)品分別生產(chǎn)、件,由已知條件可得二元一次不等式組:(2)畫出不等式組所表示的平面區(qū)域:注意:在平面區(qū)域內(nèi)的必須是整數(shù)點(diǎn)(3)提出新問題:進(jìn)一步,若生產(chǎn)一件甲產(chǎn)品獲利2萬元,生產(chǎn)一件乙產(chǎn)品獲利3萬元,采用哪種生產(chǎn)安排利潤最大?(4)嘗試解答:(5)獲得結(jié)果:新知:線性規(guī)劃的有關(guān)概念:線性約束條件:在上述問題中,不等式組是一組變量x、y的約束條件,這組約束條件都是關(guān)于x、y的一次不等式,故又稱線性約束條件線性目標(biāo)函數(shù):關(guān)于x、y的一次式z=2x+y是欲達(dá)到最大值或最小值所涉及的變量x、y的解析式,叫線性目標(biāo)函數(shù)線性規(guī)劃問題:一般地,求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題可行解、可行域和最優(yōu)解:滿足線性約束條件的解叫可行解由所有可行解組成的集合叫做可行域使目標(biāo)函數(shù)取得最大或最小值的可行解叫線性規(guī)劃問題的最優(yōu)解 典型例題 例1 在探究中若生產(chǎn)一件甲產(chǎn)品獲利3萬元,生產(chǎn)一件乙產(chǎn)品獲利2萬元,問如何安排生產(chǎn)才能獲得最大利潤? 動(dòng)手試試練1. 求的最大值,其中、滿足約束條件【學(xué)習(xí)反思】 學(xué)習(xí)小結(jié)用圖解法解決簡單的線性規(guī)劃問題的基本步驟:(1)尋找線性約束條件,線性目標(biāo)函數(shù);(2)由二元一次不等式表示的平面區(qū)域做出可行域;(3)在可行域內(nèi)求目標(biāo)函數(shù)的最優(yōu)解 知識(shí)拓展尋找整點(diǎn)最優(yōu)解的方法:1. 平移找解法:先打網(wǎng)格,描整點(diǎn),平移直線,最先經(jīng)過或最后經(jīng)過的整點(diǎn)便是最優(yōu)整點(diǎn)解,這種方法應(yīng)用于充分利用非整點(diǎn)最優(yōu)解的信息,結(jié)合精確的作圖才行,當(dāng)可行域是有限區(qū)域且整點(diǎn)個(gè)數(shù)又較少時(shí),可逐個(gè)將整點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)求值,經(jīng)比較求最優(yōu)解.2. 調(diào)整優(yōu)值法:先求非整點(diǎn)最優(yōu)解及最優(yōu)值,再借助不定方程的知識(shí)調(diào)整最優(yōu)值,最后篩先出整點(diǎn)最優(yōu)解.3. 由于作圖有誤差,有時(shí)僅由圖形不一定就能準(zhǔn)確而迅速地找到最優(yōu)解,此時(shí)可將數(shù)個(gè)可能解逐一檢驗(yàn)即可見分曉. 【基礎(chǔ)達(dá)標(biāo)】 自我評(píng)價(jià) 你完成本節(jié)導(dǎo)學(xué)案的情況為( ). a. 很好 b. 較好 c. 一般 d. 較差 當(dāng)堂檢測(時(shí)量:5分鐘 滿分:10分)計(jì)分:1. 目標(biāo)函數(shù),將其看成直線方程時(shí),的意義是( ).a該直線的橫截距 b該直線的縱截距c該直線的縱截距的一半的相反數(shù)d該直線的縱截距的兩倍的相反數(shù)2. 已知、滿足約束條件,則的最小值為( ). a 6 b6 c10 d10c(4,2)a(1,1)b(5,1)o3. 在如圖所示的可行域內(nèi),目標(biāo)函數(shù)取得最小值的最優(yōu)解有無數(shù)個(gè),則的一個(gè)可能值是( ).a. 3 b.3 c. 1 d.14. 有5輛6噸汽車和4輛5噸汽車,要運(yùn)送最多的貨物,完成這項(xiàng)運(yùn)輸任務(wù)的線性目標(biāo)函數(shù)為 .5. 已知點(diǎn)(3,1)和(4,6)在直線的兩側(cè),則的取值范圍是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論