六年級數(shù)學(xué)復(fù)習(xí)資料已完成.doc_第1頁
六年級數(shù)學(xué)復(fù)習(xí)資料已完成.doc_第2頁
六年級數(shù)學(xué)復(fù)習(xí)資料已完成.doc_第3頁
六年級數(shù)學(xué)復(fù)習(xí)資料已完成.doc_第4頁
六年級數(shù)學(xué)復(fù)習(xí)資料已完成.doc_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

仙洞小學(xué)六年級數(shù)學(xué)總復(fù)習(xí)資料歸納常用的數(shù)量關(guān)系式1、速度時間路程 時間路程速度 速度路程時間2、單價數(shù)量總價 總價單價數(shù)量 總價數(shù)量單價 3、 工作效率工作時間工作總量 工作時間工作總量工作效率 工作效率工作總量工作時間4、 加法: 加數(shù)加數(shù)和 一個加數(shù)和另一個加數(shù)5、 減法: 被減數(shù)減數(shù)差 減數(shù)被減數(shù)差 被減數(shù)差減數(shù)6、乘法: 因數(shù)因數(shù)積 一個因數(shù)積另一個因數(shù)7、除法: 被除數(shù)除數(shù)商 除數(shù)被除數(shù)商 被除數(shù)商除數(shù)小學(xué)數(shù)學(xué)圖形計算公式 1、正方形(C:周長 S:面積 a:邊長) 正方形的周長邊長4 C=4a 正方形的面積=邊長邊長 S=aa 2、正方體(V:體積 a:棱長) 正方體的棱長總和=棱長12 正方體的表面積=棱長棱長6 S表=aa6 正方體的體積=棱長棱長棱長=底面積高 V=aaa =sh3、長方形(C:周長 S:面積 a:長 b:寬) 長方形的周長=(長+寬)2 C=2(a+b) 長方形的面積=長寬 S=ab 4、長方體(V:體積 s:面積 a:長 b: 寬 h:高) (1)長方體的棱長總和=(長+寬+高)4 =長4 +寬4+高4 長方體的棱長總和4=長 +寬 + 高 (2)長方體的表面積=(長寬+長高+寬高)2 S=2(ab+ah+bh) (3)長方體的體積=長寬高=底面積高 V=abh=sh 5、三角形 (s:面積 a:底 h:高) 三角形面積=底高2 s=ah2 三角形高=面積 2底 三角形底=面積 2高 6、平行四邊形 (s:面積 a:底 h:高 )平行四邊形的面積=底高 s=ah 平行四邊形的底= 平行四邊形的面積高平行四邊形的高= 平行四邊形的面積底7、梯形(s:面積 a:上底 b:下底 h:高) 梯形的面積=(上底+下底)高2 s=(a+b) h2 8、圓形(S:面積 C:周長 圓周率: d=直徑 r=半徑) (1)周長=直徑=2半徑 C=d=2r (2)面積=半徑半徑 S=r29、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長) (1) 側(cè)面積=底面周長高=ch(2rh或dh) (2) 表面積=側(cè)面積 + 底面積2 (3) 體積=底面積高 V=sh=r2h (4)體積側(cè)面積2半徑10、圓錐體 (v:體積 h:高 S:底面積 r:底面半徑) 體積=底面積高3 v=Sh3=Sh S=v3h h=v3s11、總數(shù)總份數(shù)平均數(shù)(每份數(shù)) 12、相遇問題 相遇路程速度和相遇時間 相遇時間相遇路程速度和 速度和相遇路程相遇時間13、濃度問題 溶液的重量 溶質(zhì)的重量溶劑的重量 濃度溶質(zhì)的重量溶液的重量100% 溶質(zhì)的重量溶液的重量濃度 溶液的重量溶質(zhì)的重量濃度 14、利潤與折扣問題 利潤售出價成本 利息本金利率時間 常用單位換算單位換算的方法: 高級單位化成低級單位,乘以它們之間的進率; 低級單位化成高級單位,除以它們之間的進率。 相鄰的兩個長度單位之間的進率是10,相鄰的兩個面積單位之間的進率是100,相鄰的兩個體積單位之間的進率是1000.長度單位換算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面積單位換算 1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 體(容)積單位換算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量單位換算 1噸=1000 千克 1千克=1000克 1千克=1公斤 人民幣單位換算 1元=10角 1角=10分 1元=100分 時間單位換算 1世紀=100年 1年=12月 大月(31天) 有:135781012月 小月(30天)的有46911月 平年2月28天 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒 基本概念 第一章數(shù)和數(shù)的運算 一、概念 (一)整數(shù) (1) 整數(shù)的意義:像、-3,-2,-1, 0, 1, 2, 3、這樣的數(shù)叫做整數(shù)。 負整數(shù)、0和自然數(shù)都是整數(shù)。 (2 )自然數(shù) 我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3、這樣的數(shù)叫做自然數(shù)。 一個物體也沒有,用0表示。0也是自然數(shù)。 (3)計數(shù)單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億、都是計數(shù)單位。 每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。 (4)數(shù)位 計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。 (5)數(shù)的整除 整數(shù)a除以整數(shù)b(b 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。如果數(shù)a能被數(shù)b(b 0)整除,a就叫做b的倍數(shù),b就叫做a的因數(shù)(或a的約數(shù))。倍數(shù)和因數(shù)是相互依存的。 因為35能被7整除,所以35是7的倍數(shù),7是35的因數(shù)。 一個數(shù)的因數(shù)的個數(shù)是有限的,其中最小的因數(shù)是1,最大的因數(shù)是它本身。例如:10的因數(shù)有1、2、5、10,其中最小的因數(shù)是1,最大的因數(shù)是10。 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。數(shù)的特征:3的倍數(shù)有:3、6、9、12、其中最小的倍數(shù)是3 ,沒有最大的倍數(shù)。 個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。 個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。 一個數(shù)的各個數(shù)位上的數(shù)字的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。 一個數(shù)各位數(shù)上的數(shù)字的和能被9整除,這個數(shù)就能被9整除。 能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。 一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 能被2整除的數(shù)叫做偶數(shù)。 不能被2整除的數(shù)叫做奇數(shù)。 0也是偶數(shù)。自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。 一個數(shù),如果只有1和它本身兩個因數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一個數(shù),如果除了1和它本身還有別的因數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。 1既不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其因數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。 每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=35,3和5 叫做15的質(zhì)因數(shù)。 把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。例如把28分解質(zhì)因數(shù) 28=227 幾個數(shù)公有的因數(shù),叫做這幾個數(shù)的公因數(shù)。其中最大的一個,叫做這幾個數(shù)的最大公因數(shù),例如12的因數(shù)有1、2、3、4、6、12;18的因數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因數(shù),6是它們的最大公因數(shù)。 公因數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況: 1和任何自然數(shù)互質(zhì)。 相鄰的兩個自然數(shù)互質(zhì)。 兩個不同的質(zhì)數(shù)互質(zhì)。 當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。 兩個合數(shù)的公因數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。 如果較小數(shù)是較大數(shù)的因數(shù),那么較小數(shù)就是這兩個數(shù)的最大公因數(shù)。 如果兩個數(shù)是互質(zhì)數(shù),它們的最大公因數(shù)就是1。 幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有2、4、6 、8、10、12、14、16、183的倍數(shù)有3、6、9、12、15、18 其中6、12、18是2、3的公倍數(shù),6是它們的最小公倍數(shù)。 如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。 如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。 幾個數(shù)的公因數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。 (二)小數(shù) (1)小數(shù)的意義 把整數(shù)1平均分成10份、100份、1000份 得到的十分之幾、百分之幾、千分之幾 可以用小數(shù)表示。 一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾 一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。 在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。小數(shù)部分的最高分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。 (2)小數(shù)的分類 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小數(shù)。 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。例如:3.25 、 5.26 都是帶小數(shù)。 有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。 例如:41.7 、 25.3 、 0.23 都是有限小數(shù)。 無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如: 4.33 3.1415926無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。 例如: 循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。 例如: 3.555 0.0333 12.109109 一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。 例如: 3.99的循環(huán)節(jié)是“ 9 ” , 0.5454 的循環(huán)節(jié)是“ 54 ” 。 純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。例如: 3.1110.5656 混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。 3.12220.03333 寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán)節(jié)只有一個數(shù)字,就只在它的上面點一個點。例如: 3.777 簡寫作 ;0.5302302 簡寫作 。 (三)分數(shù) (1) 分數(shù)的意義 把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。表示一個數(shù)是另一個數(shù)的幾分之幾。 在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分數(shù)線上面的數(shù)叫做分子,表示有這樣的多少份。 把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分數(shù)單位。例如: 的分數(shù)單位是。 (2 )分數(shù)的分類 真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。 假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于1。 帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。帶分數(shù)一定大于1。 (3)約分和通分 把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù) ,叫做約分。 一個分數(shù)不能再約分了,分子分母是互質(zhì)數(shù)的分數(shù),叫做最簡分數(shù)。 把分母不相同的分數(shù)分別化成分母相同而大小不變的分數(shù),這個過程叫做通分。 (四)百分數(shù) 表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù),也叫做百分率或百分比。百分數(shù)通常用%來表示。百分號是表示百分數(shù)的符號。 二、方法 (一)數(shù)的讀法和寫法 (1)整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。 (2)整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。 (3)小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。 (4)小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。 (5)分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。 (6)分數(shù)的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。 (7)百分數(shù)的讀法:讀百分數(shù)時,先讀“百分之”,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。 (8)百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%”來表示。 (二)數(shù)的改寫 一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。 (1)準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。例如把1254300000 改寫成以萬做單位的數(shù)是125430 萬;改寫成以億做單位的數(shù) 12.543億。 (2)近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。例如: 1302490015 省略億后面的尾數(shù)是 13 億。 (3)四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4 或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進1。例如:省略 345900 萬后面的尾數(shù)約是 35 萬。省略4725097420 億后面的尾數(shù)約是 47 億。 (4)大小比較 比較整數(shù)大?。罕容^整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。 比較小數(shù)的大?。合瓤此鼈兊恼麛?shù)部分,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大 比較分數(shù)的大?。悍帜赶嗤姆謹?shù),分子大的分數(shù)比較大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。 (三)數(shù)的互化 (1)小數(shù)化成分數(shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來小數(shù)去掉小數(shù)點作分子,能約分的要約分。 (2)分數(shù)化成小數(shù):用分子除以分母。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。 (3)一個最簡分數(shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù);如果分母中含有2和5 以外的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。 (4)小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。 (5)百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。 (6)分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。 (7)百分數(shù)化成分數(shù):先把百分數(shù)改寫成分母為100的分數(shù),能約分的要約成最簡分數(shù)。 (四)數(shù)的整除 (1)把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。 (2)求幾個數(shù)的最大公因數(shù)的方法是:先用這幾個數(shù)的公因數(shù)連續(xù)去除,一直除到所得的商只有公因數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公因數(shù)。 (3)求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分數(shù))的公因數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。 (4)成為互質(zhì)關(guān)系的兩個數(shù):1和任何自然數(shù)互質(zhì) ; 相鄰的兩個自然數(shù)互質(zhì); 當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì); 兩個合數(shù)的公因數(shù)只有1時,這兩個合數(shù)互質(zhì)。 (五) 約分和通分 約分的方法:用分子和分母的公因數(shù)(1除外)同時去除分子、分母;通常要除到得出最簡分數(shù)為止。 通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。三、性質(zhì)和規(guī)律 (一)商不變的規(guī)律 商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍數(shù),商不變。 (二)小數(shù)的性質(zhì) 小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零,小數(shù)的大小不變。 (三)小數(shù)點位置的移動引起小數(shù)大小的變化 (1)小數(shù)點向右移動一位,原來的數(shù)就擴大10倍;小數(shù)點向右移動兩位,原來的數(shù)就擴大100倍;小數(shù)點向右移動三位,原來的數(shù)就擴大1000倍 (2)小數(shù)點向左移動一位,原來的數(shù)就縮小10倍;小數(shù)點向左移動兩位,原來的數(shù)就縮小100倍;小數(shù)點向左移動三位,原來的數(shù)就縮小1000倍 (3)小數(shù)點向左移動或者向右移動的位數(shù)不夠時,要用“0補足位。 (四)分數(shù)的基本性質(zhì) 分數(shù)的基本性質(zhì):分數(shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分數(shù)的大小不變。 (五)分數(shù)與除法的關(guān)系 (1)被除數(shù)除數(shù)= = (2)因為零不能作除數(shù),所以分數(shù)的分母不能為零。 (3)被除數(shù)相當(dāng)于分子,除數(shù)相當(dāng)于分母,商相當(dāng)于分數(shù)值。 四、運算的意義 (一)整數(shù)四則運算 (1)整數(shù)加法: 把兩個數(shù)合并成一個數(shù)的運算叫做加法。求兩個數(shù)的和用加法。 在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。 加數(shù)+加數(shù)=和 一個加數(shù)=和另一個加數(shù) (2)整數(shù)減法: 已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。 在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。 加法和減法互為逆運算。 被減數(shù)減數(shù)=差 被減數(shù)=差+減數(shù) 減數(shù)=被減數(shù)差 (3)整數(shù)乘法: 求幾個相同加數(shù)的和的簡便運算叫做乘法。 在乘法里,相同的加數(shù) 和 相同加數(shù)的個數(shù) 都叫做因數(shù)。相同加數(shù)的和叫做積。 在乘法里,0和任何數(shù)相乘都得0。 1和任何數(shù)相乘都等于任何數(shù)。 一個因數(shù) 一個因數(shù) =積 一個因數(shù)=積另一個因數(shù) (4)整數(shù)除法: 已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。 求一個數(shù)是另一個數(shù)的幾倍或幾分之幾用除法。 求一個數(shù)里面包含著幾個這樣的數(shù)用除法。在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。 乘法和除法互為逆運算。 在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。 被除數(shù)除數(shù)=商 除數(shù)=被除數(shù)商 被除數(shù)=商除數(shù) (二)小數(shù)四則運算 (1)小數(shù)加法: 小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。 (2)小數(shù)減法:小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。 (3)小數(shù)乘法:小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾是多少。 (4)小數(shù)除法: 小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。 (5)乘方: 求幾個相同因數(shù)的積的運算叫做乘方。例如 3 3 =32 (三)分數(shù)四則運算 (1)分數(shù)加法: 分數(shù)加法的意義與整數(shù)加法的意義相同。 是把兩個數(shù)合并成一個數(shù)的運算。 (2)分數(shù)減法: 分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。 (3)分數(shù)乘法: 分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。 分數(shù)乘整數(shù)表示求幾個相同加數(shù)的和是多少; 整數(shù)乘分數(shù),表示求這個數(shù)的幾分之幾是多少; 分數(shù)乘分數(shù)表示求前面這個數(shù)的幾分之幾是多少。 (4)乘積是1的兩個數(shù)叫做互為倒數(shù)。 (5)分數(shù)除法: 分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。 (四)運算定律 (1)加法交換律: 兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a 。 (2)加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加,它們的和不變,即(a+b)+c=a+(b+c) 。 (3)乘法交換律: 兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即ab=ba。 (4)乘法結(jié)合律: 三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即(ab)c=a(bc) 。 (5)乘法分配律:兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加,即(a+b)c=ac+bc。 兩個數(shù)的差與一個數(shù)相乘,可以把被減數(shù)和減數(shù)分別與這個數(shù)相乘,再把兩個積相減,即(ab)c=acbc 。 (6)減法的性質(zhì): 從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即abc=a(b+c) 。 (7)除法的性質(zhì): 從一個數(shù)里連續(xù)除以幾個數(shù),可以從這個數(shù)里除以所有除數(shù)的積,商不變,即abc=a(bc) 。(五)運算法則 (1)整數(shù)加法計算法則: 相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。 (2)整數(shù)減法計算法則: 相同數(shù)位對齊,從低位減起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。 (3)整數(shù)乘法計算法則: 先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。 (4)整數(shù)除法計算法則: 先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位; 如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。 (5)小數(shù)乘法法則: 先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“0”補足。 (6)除數(shù)是整數(shù)的小數(shù)除法計算法則: 先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。 (7)除數(shù)是小數(shù)的除法計算法則: 先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。 (8)同分母分數(shù)加減法計算方法: 同分母分數(shù)相加減,只把分子相加減,分母不變。 (9)異分母分數(shù)加減法計算方法: 先通分,使它們變成同分母分數(shù),然后按照同分母分數(shù)加減法的的法則進行計算。 (10)帶分數(shù)加減法的計算方法: 整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。 (11)分數(shù)乘法的計算法則: 分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。 (12)分數(shù)除法的計算法則: 甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。 (六) 運算順序 (1)小數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。 (2)分數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。 (3)沒有括號的混合運算: 同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。 (4)有括號的混合運算: 先算小括號里面的,再算中括號里面的,最后算括號外面的。 (5)第一級運算: 加法和減法叫做第一級運算。 (6)第二級運算: 乘法和除法叫做第二級運算。先算乘除,再算加減。 面積 什么是面積 面積,就是物體所占平面的大小。對立體物體的表面的多少的測量一般稱表面積。 體積和容積 什么是體積、容積 體積,就是物體所占空間的大小。 容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。 質(zhì)量 什么是質(zhì)量 質(zhì)量,就是表示表示物體有多重。 第三章 代數(shù)初步知識 一、用字母表示數(shù)的寫法 數(shù)字和字母、字母和字母相乘時,乘號可以記作“.”,或者省略不寫,數(shù)字要寫在字母的前面。 當(dāng)“1”與任何字母相乘時,“1”省略不寫。 在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。 用含有字母的式子表示問題的答案時,除數(shù)一般寫成分母,如果式子中有加號或者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的名稱。 將數(shù)值代入式子求值 把具體的數(shù)代入式子求值時,要注意書寫格式:先寫出字母等于幾,然后寫出原式,再把數(shù)代入式子求值。字母表示的是數(shù),后面不寫單位名稱。 同一個式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的值也不相同。 二、簡易方程 (一)方程和方程的解 1方程:含有未知數(shù)的等式叫做方程。 注意方程是等式,又含有未知數(shù),兩者缺一不可。2 方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。 三、解方程 解方程,求方程的解的過程叫做解方程。 四、列方程解應(yīng)用題 1 列方程解應(yīng)用題的意義 * 用方程式去解答應(yīng)用題求得應(yīng)用題的未知量的方法。 2 列方程解答應(yīng)用題的步驟 * 弄清題意,確定未知數(shù)并用x表示; * 找出題中的數(shù)量之間的相等關(guān)系; * 列方程,解方程; * 檢查或驗算,寫出答案。 3列方程解應(yīng)用題的方法 綜合法:先把應(yīng)用題中已知數(shù)(量)和所設(shè)未知數(shù)(量)列成有關(guān)的代數(shù)式,再找出它們之間的等量關(guān)系,進而列出方程。這是從部分到整體的一種 思維過程,其思考方向是從已知到未知。 分析法:先找出等量關(guān)系,再根據(jù)具體建立等量關(guān)系的需要,把應(yīng)用題中已知數(shù)(量)和所設(shè)的未知數(shù)(量)列成有關(guān)的代數(shù)式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。 五 比和比例 1比的意義和性質(zhì) (1) 比的意義 兩個數(shù)相除又叫做兩個數(shù)的比。 “:”是比號,讀作“比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。 同除法比較,比的前項相當(dāng)于被除數(shù),后項相當(dāng)于除數(shù),比值相當(dāng)于商。 比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。 比的后項不能是零。 根據(jù)分數(shù)與除法的關(guān)系,可知比的前項相當(dāng)于分子,后項相當(dāng)于分母,比值相當(dāng)于分數(shù)值。 (2)比的性質(zhì) 比的前項和后項同時乘上或者除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質(zhì)。 (3)求比值和化簡比 求比值的方法:用比的前項除以后項,它的結(jié)果是一個數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。 根據(jù)比的基本性質(zhì)可以把比化成最簡單的整數(shù)比。它的結(jié)果必須是一個最簡比,即前、后項是互質(zhì)的數(shù)。 (4)比例尺 圖上距離:實際距離=比例尺 要求:會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。 線段比例尺:在圖上附有一條注有數(shù)目的線段,用來表示和地面上相對應(yīng)的實際距離。 (5)按比例分配 在農(nóng)業(yè)生產(chǎn)和日常生活中,常常需要把一個數(shù)量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。 方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。 3 正比例和反比例 (1) 成正比例的量 兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。 用字母表示y/x=k(一定) (2)成反比例的量 兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。 用字母表示xy=k(一定) 第四章 幾何的初步知識 一 線和角 (1)線 * 直線 直線沒有端點;長度無限;過一點可以畫無數(shù)條,過兩點只能畫一條直線。 * 射線 射線只有一個端點;長度無限。 * 線段 線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。 * 平行線 在同一平面內(nèi),不相交的兩條直線叫做平行線。 兩條平行線之間的垂線長度都相等。 * 垂線 兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。 從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。 (2)角 (1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。 (2)角的分類 銳角:小于90的角叫做銳角。 直角:等于90的角叫做直角。 鈍角:大于90而小于180的角叫做鈍角。 平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180。 周角:角的一邊旋轉(zhuǎn)一周,與另一邊重合。周角是360。 二 平面圖形 1長方形 (1)特征 對邊相等,4個角都是直角的四邊形。有兩條對稱軸。 (2)計算公式 c=2(a+b) s=ab 2正方形 (1) 特征: 四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。 (2)計算公式 c=4a s=a3三角形 (1)特征 由三條線段圍成的圖形。內(nèi)角和是180度。三角形具有穩(wěn)定性。三角形有三條高。(2)計算公式 s=ah/2 (3)三角形的分類 按角分 銳角三角形:三個角都是銳角。 直角三角形:有一個角是直角。等腰直角三角形的兩個銳角各為45度,它有一條對稱軸。 鈍角三角形:有一個角是鈍角。 按邊分 不等邊三角形:三條邊長度不相等。 等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。 等邊三角形:三條邊長度都相等;三個內(nèi)角都是60度;有三條對稱軸。 4平行四邊形 (1)特征 兩組對邊分別平行的四邊形叫做平行四邊形。 相對的邊平行且長度相等。對角相等,相鄰的兩個角的度數(shù)之和為180度。平行四邊形容易變形。 (2) 計算公式 s=ah 5 梯形 (1)特征 只有一組對邊平行的四邊形叫做梯形。 中位線等于上下底和的一半。 等腰梯形有一條對稱軸。 (2) 公式 s=(a+b)h/2=mh 6 圓 (1) 圓的認識 圓是平面上的一種曲線圖形。 圓中心的一點叫做圓心。一般用字母o表示。 半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。 在同一個圓里,有無數(shù)條半徑,每條半徑的長度都相等。 通過圓心并且兩端都在圓上的線段叫做直徑。一般用d表示。 同一個圓里有無數(shù)條直徑,所有的直徑都相等。 同一個圓里,直徑等于兩個半徑的長度,即d=2r。 圓心決定圓的位置,半徑?jīng)Q定圓的大小。 圓有無數(shù)條對稱軸。 (2)圓的畫法 把圓規(guī)的兩腳分開,定好兩腳間的距離(即半徑);把有針尖的一只腳固定在一點(即圓心)上,把裝有鉛筆尖的一只腳旋轉(zhuǎn)一周,就

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論