




免費(fèi)預(yù)覽已結(jié)束,剩余53頁(yè)可下載查看
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
zz大學(xué)物理習(xí)題及解答習(xí)題一16 與有無(wú)不同?和有無(wú)不同? 和有無(wú)不同?其不同在哪里?試舉例說(shuō)明解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在徑向上的分量.有(式中叫做單位矢),則式中就是速度徑向上的分量,不同如題1-1圖所示. 題1-1圖 (3)表示加速度的模,即,是加速度在切向上的分量.有表軌道節(jié)線方向單位矢),所以式中就是加速度的切向分量.(的運(yùn)算較復(fù)雜,超出教材規(guī)定,故不予討論)17 設(shè)質(zhì)點(diǎn)的運(yùn)動(dòng)方程為=(),=(),在計(jì)算質(zhì)點(diǎn)的速度和加速度時(shí),有人先求出r,然后根據(jù)=,及而求得結(jié)果;又有人先計(jì)算速度和加速度的分量,再合成求得結(jié)果,即 =及= 你認(rèn)為兩種方法哪一種正確?為什么??jī)烧卟顒e何在?解:后一種方法正確.因?yàn)樗俣扰c加速度都是矢量,在平面直角坐標(biāo)系中,有,故它們的模即為而前一種方法的錯(cuò)誤可能有兩點(diǎn),其一是概念上的錯(cuò)誤,即誤把速度、加速度定義作其二,可能是將誤作速度與加速度的模。在1-1題中已說(shuō)明不是速度的模,而只是速度在徑向上的分量,同樣,也不是加速度的模,它只是加速度在徑向分量中的一部分?;蛘吒爬ㄐ缘卣f(shuō),前一種方法只考慮了位矢在徑向(即量值)方面隨時(shí)間的變化率,而沒有考慮位矢及速度的方向隨間的變化率對(duì)速度、加速度的貢獻(xiàn)。18 一質(zhì)點(diǎn)在平面上運(yùn)動(dòng),運(yùn)動(dòng)方程為=3+5, =2+3-4.式中以 s計(jì),,以m計(jì)(1)以時(shí)間為變量,寫出質(zhì)點(diǎn)位置矢量的表示式;(2)求出=1 s 時(shí)刻和2s 時(shí)刻的位置矢量,計(jì)算這1秒內(nèi)質(zhì)點(diǎn)的位移;(3)計(jì)算0 s時(shí)刻到4s時(shí)刻內(nèi)的平均速度;(4)求出質(zhì)點(diǎn)速度矢量表示式,計(jì)算4 s 時(shí)質(zhì)點(diǎn)的速度;(5)計(jì)算0s 到4s 內(nèi)質(zhì)點(diǎn)的平均加速度;(6)求出質(zhì)點(diǎn)加速度矢量的表示式,計(jì)算4s 時(shí)質(zhì)點(diǎn)的加速度(請(qǐng)把位置矢量、位移、平均速度、瞬時(shí)速度、平均加速度、瞬時(shí)加速度都表示成直角坐標(biāo)系中的矢量式)解:(1) (2)將,代入上式即有 (3) (4) 則 (5) (6) 這說(shuō)明該點(diǎn)只有方向的加速度,且為恒量。19 質(zhì)點(diǎn)沿軸運(yùn)動(dòng),其加速度和位置的關(guān)系為 2+6,的單位為,的單位為 m. 質(zhì)點(diǎn)在0處,速度為10,試求質(zhì)點(diǎn)在任何坐標(biāo)處的速度值解: 分離變量: 兩邊積分得 由題知,時(shí),, 110 已知一質(zhì)點(diǎn)作直線運(yùn)動(dòng),其加速度為 4+3,開始運(yùn)動(dòng)時(shí),5 m,=0,求該質(zhì)點(diǎn)在10s 時(shí)的速度和位置 解: 分離變量,得 積分,得 由題知,,故 又因?yàn)?分離變量, 積分得 由題知 ,故 所以時(shí)1.11 一質(zhì)點(diǎn)沿半徑為1 m 的圓周運(yùn)動(dòng),運(yùn)動(dòng)方程為 =2+3,式中以弧度計(jì),以秒計(jì),求:(1) 2 s時(shí),質(zhì)點(diǎn)的切向和法向加速度;(2)當(dāng)加速度的方向和半徑成45角時(shí),其角位移是多少? 解: (1)時(shí), (2)當(dāng)加速度方向與半徑成角時(shí),有即 亦即 則解得 于是角位移為1.12 質(zhì)點(diǎn)沿半徑為的圓周按的規(guī)律運(yùn)動(dòng),式中為質(zhì)點(diǎn)離圓周上某點(diǎn)的弧長(zhǎng),,都是常量,求:(1)時(shí)刻質(zhì)點(diǎn)的加速度;(2) 為何值時(shí),加速度在數(shù)值上等于解:(1) 則 加速度與半徑的夾角為(2)由題意應(yīng)有即 當(dāng)時(shí),1.14 一船以速率30kmh-1沿直線向東行駛,另一小艇在其前方以速率40kmh-1沿直線向北行駛,問在船上看小艇的速度為何?在艇上看船的速度又為何? 解:(1)大船看小艇,則有,依題意作速度矢量圖如題1-13圖(a)題1-13圖由圖可知 方向北偏西 (2)小船看大船,則有,依題意作出速度矢量圖如題1-13圖(b),同上法,得方向南偏東習(xí)題二2.7 一細(xì)繩跨過(guò)一定滑輪,繩的一邊懸有一質(zhì)量為的物體,另一邊穿在質(zhì)量為的圓柱體的豎直細(xì)孔中,圓柱可沿繩子滑動(dòng)今看到繩子從圓柱細(xì)孔中加速上升,柱體相對(duì)于繩子以勻加速度下滑,求,相對(duì)于地面的加速度、繩的張力及柱體與繩子間的摩擦力(繩輕且不可伸長(zhǎng),滑輪的質(zhì)量及輪與軸間的摩擦不計(jì))解:因繩不可伸長(zhǎng),故滑輪兩邊繩子的加速度均為,其對(duì)于則為牽連加速度,又知對(duì)繩子的相對(duì)加速度為,故對(duì)地加速度,由圖(b)可知,為 又因繩的質(zhì)量不計(jì),所以圓柱體受到的摩擦力在數(shù)值上等于繩的張力,由牛頓定律,有 聯(lián)立、式,得討論 (1)若,則表示柱體與繩之間無(wú)相對(duì)滑動(dòng)(2)若,則,表示柱體與繩之間無(wú)任何作用力,此時(shí), 均作自由落體運(yùn)動(dòng)題2-1圖2.8 一個(gè)質(zhì)量為的質(zhì)點(diǎn),在光滑的固定斜面(傾角為)上以初速度運(yùn)動(dòng),的方向與斜面底邊的水平線平行,如圖所示,求這質(zhì)點(diǎn)的運(yùn)動(dòng)軌道解: 物體置于斜面上受到重力,斜面支持力.建立坐標(biāo):取方向?yàn)檩S,平行斜面與軸垂直方向?yàn)檩S.如圖2-2.題2-2圖方向: 方向: 時(shí) 由、式消去,得2.9 質(zhì)量為16 kg 的質(zhì)點(diǎn)在平面內(nèi)運(yùn)動(dòng),受一恒力作用,力的分量為6 N,-7 N,當(dāng)0時(shí),0,-2 ms-1,0求當(dāng)2 s時(shí)質(zhì)點(diǎn)的 (1)位矢;(2)速度解: (1)于是質(zhì)點(diǎn)在時(shí)的速度(2)210 質(zhì)點(diǎn)在流體中作直線運(yùn)動(dòng),受與速度成正比的阻力(為常數(shù))作用,=0時(shí)質(zhì)點(diǎn)的速度為,證明(1) 時(shí)刻的速度為;(2) 由0到的時(shí)間內(nèi)經(jīng)過(guò)的距離為()1-;(3)停止運(yùn)動(dòng)前經(jīng)過(guò)的距離為;(4)證明當(dāng)時(shí)速度減至的,式中m為質(zhì)點(diǎn)的質(zhì)量答: (1) 分離變量,得即 (2) (3)質(zhì)點(diǎn)停止運(yùn)動(dòng)時(shí)速度為零,即t,故有 (4)當(dāng)t=時(shí),其速度為即速度減至的.2.11一質(zhì)量為的質(zhì)點(diǎn)以與地的仰角=30的初速?gòu)牡孛鎾伋?,若忽略空氣阻力,求質(zhì)點(diǎn)落地時(shí)相對(duì)拋射時(shí)的動(dòng)量的增量解: 依題意作出示意圖如題2-6圖題2.11圖在忽略空氣阻力情況下,拋體落地瞬時(shí)的末速度大小與初速度大小相同,與軌道相切斜向下,而拋物線具有對(duì)軸對(duì)稱性,故末速度與軸夾角亦為,則動(dòng)量的增量為由矢量圖知,動(dòng)量增量大小為,方向豎直向下2.12 一質(zhì)量為的小球從某一高度處水平拋出,落在水平桌面上發(fā)生彈性碰撞并在拋出1 s,跳回到原高度,速度仍是水平方向,速度大小也與拋出時(shí)相等求小球與桌面碰撞過(guò)程中,桌面給予小球的沖量的大小和方向并回答在碰撞過(guò)程中,小球的動(dòng)量是否守恒?解: 由題知,小球落地時(shí)間為因小球?yàn)槠綊佭\(yùn)動(dòng),故小球落地的瞬時(shí)向下的速度大小為,小球上跳速度的大小亦為設(shè)向上為軸正向,則動(dòng)量的增量方向豎直向上,大小 碰撞過(guò)程中動(dòng)量不守恒這是因?yàn)樵谂鲎策^(guò)程中,小球受到地面給予的沖力作用另外,碰撞前初動(dòng)量方向斜向下,碰后末動(dòng)量方向斜向上,這也說(shuō)明動(dòng)量不守恒2.13 作用在質(zhì)量為10 kg的物體上的力為N,式中的單位是s,(1)求4s后,這物體的動(dòng)量和速度的變化,以及力給予物體的沖量(2)為了使這力的沖量為200 Ns,該力應(yīng)在這物體上作用多久,試就一原來(lái)靜止的物體和一個(gè)具有初速度ms-1的物體,回答這兩個(gè)問題解: (1)若物體原來(lái)靜止,則,沿軸正向,若物體原來(lái)具有初速,則于是,同理, ,這說(shuō)明,只要力函數(shù)不變,作用時(shí)間相同,則不管物體有無(wú)初動(dòng)量,也不管初動(dòng)量有多大,那么物體獲得的動(dòng)量的增量(亦即沖量)就一定相同,這就是動(dòng)量定理(2)同上理,兩種情況中的作用時(shí)間相同,即亦即 解得,(舍去)2.14 一質(zhì)量為的質(zhì)點(diǎn)在平面上運(yùn)動(dòng),其位置矢量為求質(zhì)點(diǎn)的動(dòng)量及0 到時(shí)間內(nèi)質(zhì)點(diǎn)所受的合力的沖量和質(zhì)點(diǎn)動(dòng)量的改變量解: 質(zhì)點(diǎn)的動(dòng)量為將和分別代入上式,得,則動(dòng)量的增量亦即質(zhì)點(diǎn)所受外力的沖量為2.15 一顆子彈由槍口射出時(shí)速率為,當(dāng)子彈在槍筒內(nèi)被加速時(shí),它所受的合力為 F =()N(為常數(shù)),其中以秒為單位:(1)假設(shè)子彈運(yùn)行到槍口處合力剛好為零,試計(jì)算子彈走完槍筒全長(zhǎng)所需時(shí)間;(2)求子彈所受的沖量(3)求子彈的質(zhì)量解: (1)由題意,子彈到槍口時(shí),有,得(2)子彈所受的沖量將代入,得(3)由動(dòng)量定理可求得子彈的質(zhì)量2.16 一炮彈質(zhì)量為,以速率飛行,其內(nèi)部炸藥使此炮彈分裂為兩塊,爆炸后由于炸藥使彈片增加的動(dòng)能為,且一塊的質(zhì)量為另一塊質(zhì)量的倍,如兩者仍沿原方向飛行,試證其速率分別為+, -證明: 設(shè)一塊為,則另一塊為,及于是得 又設(shè)的速度為, 的速度為,則有 聯(lián)立、解得 將代入,并整理得于是有 將其代入式,有又,題述爆炸后,兩彈片仍沿原方向飛行,故只能取證畢2.17 設(shè)(1) 當(dāng)一質(zhì)點(diǎn)從原點(diǎn)運(yùn)動(dòng)到時(shí),求所作的功(2)如果質(zhì)點(diǎn)到處時(shí)需0.6s,試求平均功率(3)如果質(zhì)點(diǎn)的質(zhì)量為1kg,試求動(dòng)能的變化解: (1)由題知,為恒力, (2) (3)由動(dòng)能定理,2.18 以鐵錘將一鐵釘擊入木板,設(shè)木板對(duì)鐵釘?shù)淖枇εc鐵釘進(jìn)入木板內(nèi)的深度成正比,在鐵錘擊第一次時(shí),能將小釘擊入木板內(nèi)1 cm,問擊第二次時(shí)能擊入多深,假定鐵錘兩次打擊鐵釘時(shí)的速度相同解: 以木板上界面為坐標(biāo)原點(diǎn),向內(nèi)為坐標(biāo)正向,如題2-13圖,則鐵釘所受阻力為題2-13圖第一錘外力的功為 式中是鐵錘作用于釘上的力,是木板作用于釘上的力,在時(shí),設(shè)第二錘外力的功為,則同理,有 由題意,有 即 所以, 于是釘子第二次能進(jìn)入的深度為2.19 設(shè)已知一質(zhì)點(diǎn)(質(zhì)量為)在其保守力場(chǎng)中位矢為點(diǎn)的勢(shì)能為, 試求質(zhì)點(diǎn)所受保守力的大小和方向解: 方向與位矢的方向相反,即指向力心2.20 一根勁度系數(shù)為的輕彈簧的下端,掛一根勁度系數(shù)為的輕彈簧,的下端一重物,的質(zhì)量為,如題2.20圖求這一系統(tǒng)靜止時(shí)兩彈簧的伸長(zhǎng)量之比和彈性勢(shì)能之比解: 彈簧及重物受力如題2.20圖所示平衡時(shí),有題2.20圖又 所以靜止時(shí)兩彈簧伸長(zhǎng)量之比為彈性勢(shì)能之比為2.21 (1)試計(jì)算月球和地球?qū)ξ矬w的引力相抵消的一點(diǎn),距月球表面的距離是多少?地球質(zhì)量5.981024kg,地球中心到月球中心的距離3.84108m,月球質(zhì)量7.351022kg,月球半徑1.74106m(2)如果一個(gè)1kg的物體在距月球和地球均為無(wú)限遠(yuǎn)處的勢(shì)能為零,那么它在點(diǎn)的勢(shì)能為多少? 解: (1)設(shè)在距月球中心為處,由萬(wàn)有引力定律,有經(jīng)整理,得= 則點(diǎn)處至月球表面的距離為 (2)質(zhì)量為的物體在點(diǎn)的引力勢(shì)能為2.22 如題2.22圖所示,一物體質(zhì)量為2kg,以初速度3ms-1從斜面點(diǎn)處下滑,它與斜面的摩擦力為8N,到達(dá)點(diǎn)后壓縮彈簧20cm后停止,然后又被彈回,求彈簧的勁度系數(shù)和物體最后能回到的高度解: 取木塊壓縮彈簧至最短處的位置為重力勢(shì)能零點(diǎn),彈簧原長(zhǎng)處為彈性勢(shì)能零點(diǎn)。則由功能原理,有式中,再代入有關(guān)數(shù)據(jù),解得題2.22圖再次運(yùn)用功能原理,求木塊彈回的高度代入有關(guān)數(shù)據(jù),得 ,則木塊彈回高度 題2.23圖2.23 質(zhì)量為的大木塊具有半徑為的四分之一弧形槽,如題2.23圖所示質(zhì)量為的小立方體從曲面的頂端滑下,大木塊放在光滑水平面上,二者都作無(wú)摩擦的運(yùn)動(dòng),而且都從靜止開始,求小木塊脫離大木塊時(shí)的速度解: 從上下滑的過(guò)程中,機(jī)械能守恒,以,地球?yàn)橄到y(tǒng),以最低點(diǎn)為重力勢(shì)能零點(diǎn),則有又下滑過(guò)程,動(dòng)量守恒,以,為系統(tǒng)則在脫離瞬間,水平方向有聯(lián)立,以上兩式,得2.24 一個(gè)小球與一質(zhì)量相等的靜止小球發(fā)生非對(duì)心彈性碰撞,試證碰后兩小球的運(yùn)動(dòng)方向互相垂直證: 兩小球碰撞過(guò)程中,機(jī)械能守恒,有即 題2.24圖(a) 題2.24圖(b)又碰撞過(guò)程中,動(dòng)量守恒,即有亦即 由可作出矢量三角形如圖(b),又由式可知三矢量之間滿足勾股定理,且以為斜邊,故知與是互相垂直的第三習(xí)題3.7 一質(zhì)量為的質(zhì)點(diǎn)位于()處,速度為, 質(zhì)點(diǎn)受到一個(gè)沿負(fù)方向的力的作用,求相對(duì)于坐標(biāo)原點(diǎn)的角動(dòng)量以及作用于質(zhì)點(diǎn)上的力的力矩解: 由題知,質(zhì)點(diǎn)的位矢為作用在質(zhì)點(diǎn)上的力為所以,質(zhì)點(diǎn)對(duì)原點(diǎn)的角動(dòng)量為作用在質(zhì)點(diǎn)上的力的力矩為3.8 哈雷彗星繞太陽(yáng)運(yùn)動(dòng)的軌道是一個(gè)橢圓它離太陽(yáng)最近距離為8.751010m 時(shí)的速率是5.46104ms-1,它離太陽(yáng)最遠(yuǎn)時(shí)的速率是9.08102ms-1這時(shí)它離太陽(yáng)的距離多少?(太陽(yáng)位于橢圓的一個(gè)焦點(diǎn)。)解: 哈雷彗星繞太陽(yáng)運(yùn)動(dòng)時(shí)受到太陽(yáng)的引力即有心力的作用,所以角動(dòng)量守恒;又由于哈雷彗星在近日點(diǎn)及遠(yuǎn)日點(diǎn)時(shí)的速度都與軌道半徑垂直,故有 3.10 物體質(zhì)量為3kg,=0時(shí)位于, ,如一恒力作用在物體上,求3秒后,(1)物體動(dòng)量的變化;(2)相對(duì)軸角動(dòng)量的變化 解: (1) (2)解(一) 即 ,即 , 解(二) 題2-24圖3.10 平板中央開一小孔,質(zhì)量為的小球用細(xì)線系住,細(xì)線穿過(guò)小孔后掛一質(zhì)量為的重物小球作勻速圓周運(yùn)動(dòng),當(dāng)半徑為時(shí)重物達(dá)到平衡今在的下方再掛一質(zhì)量為的物體,如題2-24圖試問這時(shí)小球作勻速圓周運(yùn)動(dòng)的角速度和半徑為多少?解: 在只掛重物時(shí),小球作圓周運(yùn)動(dòng)的向心力為,即 掛上后,則有 重力對(duì)圓心的力矩為零,故小球?qū)A心的角動(dòng)量守恒即 聯(lián)立、得3.11 飛輪的質(zhì)量60kg,半徑0.25m,繞其水平中心軸轉(zhuǎn)動(dòng),轉(zhuǎn)速為900revmin-1現(xiàn)利用一制動(dòng)的閘桿,在閘桿的一端加一豎直方向的制動(dòng)力,可使飛輪減速已知閘桿的尺寸如題2-25圖所示,閘瓦與飛輪之間的摩擦系數(shù)=0.4,飛輪的轉(zhuǎn)動(dòng)慣量可按勻質(zhì)圓盤計(jì)算試求:(1)設(shè)100 N,問可使飛輪在多長(zhǎng)時(shí)間內(nèi)停止轉(zhuǎn)動(dòng)?在這段時(shí)間里飛輪轉(zhuǎn)了幾轉(zhuǎn)?(2)如果在2s內(nèi)飛輪轉(zhuǎn)速減少一半,需加多大的力?解: (1)先作閘桿和飛輪的受力分析圖(如圖(b)圖中、是正壓力,、是摩擦力,和是桿在點(diǎn)轉(zhuǎn)軸處所受支承力,是輪的重力,是輪在軸處所受支承力題3.11圖(a)題3.11圖(b)桿處于靜止?fàn)顟B(tài),所以對(duì)點(diǎn)的合力矩應(yīng)為零,設(shè)閘瓦厚度不計(jì),則有對(duì)飛輪,按轉(zhuǎn)動(dòng)定律有,式中負(fù)號(hào)表示與角速度方向相反 又 以等代入上式,得由此可算出自施加制動(dòng)閘開始到飛輪停止轉(zhuǎn)動(dòng)的時(shí)間為這段時(shí)間內(nèi)飛輪的角位移為可知在這段時(shí)間里,飛輪轉(zhuǎn)了轉(zhuǎn)(2),要求飛輪轉(zhuǎn)速在內(nèi)減少一半,可知用上面式(1)所示的關(guān)系,可求出所需的制動(dòng)力為3.12 固定在一起的兩個(gè)同軸均勻圓柱體可繞其光滑的水平對(duì)稱軸轉(zhuǎn)動(dòng)設(shè)大小圓柱體的半徑分別為和,質(zhì)量分別為和繞在兩柱體上的細(xì)繩分別與物體和相連,和則掛在圓柱體的兩側(cè),如題3.12圖所示設(shè)0.20m, 0.10m,4 kg,10 kg,2 kg,且開始時(shí),離地均為2m求:(1)柱體轉(zhuǎn)動(dòng)時(shí)的角加速度;(2)兩側(cè)細(xì)繩的張力解: 設(shè),和分別為,和柱體的加速度及角加速度,方向如圖(如圖b)題3.12(a)圖 題3.12(b)圖(1) ,和柱體的運(yùn)動(dòng)方程如下: 式中 而 由上式求得 (2)由式由式3.13 計(jì)算題3.13圖所示系統(tǒng)中物體的加速度設(shè)滑輪為質(zhì)量均勻分布的圓柱體,其質(zhì)量為,半徑為,在繩與輪緣的摩擦力作用下旋轉(zhuǎn),忽略桌面與物體間的摩擦,設(shè)50kg,200 kg,M15 kg, 0.1 m解: 分別以,滑輪為研究對(duì)象,受力圖如圖(b)所示對(duì),運(yùn)用牛頓定律,有 對(duì)滑輪運(yùn)用轉(zhuǎn)動(dòng)定律,有 又, 聯(lián)立以上4個(gè)方程,得題3.13(a)圖 題3.13(b)圖題3.14圖3.14 如題3.14圖所示,一勻質(zhì)細(xì)桿質(zhì)量為,長(zhǎng)為,可繞過(guò)一端的水平軸自由轉(zhuǎn)動(dòng),桿于水平位置由靜止開始擺下求:(1)初始時(shí)刻的角加速度;(2)桿轉(zhuǎn)過(guò)角時(shí)的角速度.解: (1)由轉(zhuǎn)動(dòng)定律,有 (2)由機(jī)械能守恒定律,有 題3.15圖3.15如題3.15圖所示,質(zhì)量為,長(zhǎng)為的均勻直棒,可繞垂直于棒一端的水平軸無(wú)摩擦地轉(zhuǎn)動(dòng),它原來(lái)靜止在平衡位置上現(xiàn)有一質(zhì)量為的彈性小球飛來(lái),正好在棒的下端與棒垂直地相撞相撞后,使棒從平衡位置處擺動(dòng)到最大角度30處(1)設(shè)這碰撞為彈性碰撞,試計(jì)算小球初速的值;(2)相撞時(shí)小球受到多大的沖量?解: (1)設(shè)小球的初速度為,棒經(jīng)小球碰撞后得到的初角速度為,而小球的速度變?yōu)?,按題意,小球和棒作彈性碰撞,所以碰撞時(shí)遵從角動(dòng)量守恒定律和機(jī)械能守恒定律,可列式: 上兩式中,碰撞過(guò)程極為短暫,可認(rèn)為棒沒有顯著的角位移;碰撞后,棒從豎直位置上擺到最大角度,按機(jī)械能守恒定律可列式: 由式得由式 由式 所以求得(2)相碰時(shí)小球受到的沖量為由式求得負(fù)號(hào)說(shuō)明所受沖量的方向與初速度方向相反題3.16圖3.16 一個(gè)質(zhì)量為M、半徑為并以角速度轉(zhuǎn)動(dòng)著的飛輪(可看作勻質(zhì)圓盤),在某一瞬時(shí)突然有一片質(zhì)量為的碎片從輪的邊緣上飛出,見題3.16圖假定碎片脫離飛輪時(shí)的瞬時(shí)速度方向正好豎直向上(1)問它能升高多少?(2)求余下部分的角速度、角動(dòng)量和轉(zhuǎn)動(dòng)動(dòng)能解: (1)碎片離盤瞬時(shí)的線速度即是它上升的初速度設(shè)碎片上升高度時(shí)的速度為,則有令,可求出上升最大高度為(2)圓盤的轉(zhuǎn)動(dòng)慣量,碎片拋出后圓盤的轉(zhuǎn)動(dòng)慣量,碎片脫離前,盤的角動(dòng)量為,碎片剛脫離后,碎片與破盤之間的內(nèi)力變?yōu)榱?,但?nèi)力不影響系統(tǒng)的總角動(dòng)量,碎片與破盤的總角動(dòng)量應(yīng)守恒,即式中為破盤的角速度于是得(角速度不變)圓盤余下部分的角動(dòng)量為轉(zhuǎn)動(dòng)動(dòng)能為題3.17圖3.17 一質(zhì)量為、半徑為R的自行車輪,假定質(zhì)量均勻分布在輪緣上,可繞軸自由轉(zhuǎn)動(dòng)另一質(zhì)量為的子彈以速度射入輪緣(如題3。17圖所示方向)(1)開始時(shí)輪是靜止的,在質(zhì)點(diǎn)打入后的角速度為何值?(2)用,和表示系統(tǒng)(包括輪和質(zhì)點(diǎn))最后動(dòng)能和初始動(dòng)能之比 解: (1)射入的過(guò)程對(duì)軸的角動(dòng)量守恒 (2) 3.18 彈簧、定滑輪和物體的連接如題3.18圖所示,彈簧的勁度系數(shù)為2.0 Nm-1;定滑輪的轉(zhuǎn)動(dòng)慣量是0.5kgm2,半徑為0.30m ,問當(dāng)6.0 kg質(zhì)量的物體落下0.40m 時(shí),它的速率為多大? 假設(shè)開始時(shí)物體靜止而彈簧無(wú)伸長(zhǎng)解: 以重物、滑輪、彈簧、地球?yàn)橐幌到y(tǒng),重物下落的過(guò)程中,機(jī)械能守恒,以最低點(diǎn)為重力勢(shì)能零點(diǎn),彈簧原長(zhǎng)為彈性勢(shì)能零點(diǎn),則有又 故有 題3.18圖 習(xí)題四4.3 慣性系S相對(duì)另一慣性系沿軸作勻速直線運(yùn)動(dòng),取兩坐標(biāo)原點(diǎn)重合時(shí)刻作為計(jì)時(shí)起點(diǎn)在S系中測(cè)得兩事件的時(shí)空坐標(biāo)分別為=6104m,=210-4s,以及=12104m,=110-4s已知在S系中測(cè)得該兩事件同時(shí)發(fā)生試問:(1)S系相對(duì)S系的速度是多少? (2) 系中測(cè)得的兩事件的空間間隔是多少?解: 設(shè)相對(duì)的速度為,(1) 由題意 則 故 (2)由洛侖茲變換 代入數(shù)值, 4.4 長(zhǎng)度=1 m的米尺靜止于S系中,與軸的夾角=30,S系相對(duì)S系沿軸運(yùn)動(dòng),在S系中觀測(cè)者測(cè)得米尺與軸夾角為45 試求:(1)S系和S系的相對(duì)運(yùn)動(dòng)速度.(2)S系中測(cè)得的米尺長(zhǎng)度 解: (1)米尺相對(duì)靜止,它在軸上的投影分別為:,米尺相對(duì)沿方向運(yùn)動(dòng),設(shè)速度為,對(duì)系中的觀察者測(cè)得米尺在方向收縮,而方向的長(zhǎng)度不變,即故 把及代入則得 故 (2)在系中測(cè)得米尺長(zhǎng)度為45兩個(gè)慣性系中的觀察者和以0.6c(c表示真空中光速)的相對(duì)速度相互接近,如果測(cè)得兩者的初始距離是20m,則測(cè)得兩者經(jīng)過(guò)多少時(shí)間相遇?解: 測(cè)得相遇時(shí)間為測(cè)得的是固有時(shí) , , ,或者,測(cè)得長(zhǎng)度收縮,4.6 觀測(cè)者甲乙分別靜止于兩個(gè)慣性參考系和中,甲測(cè)得在同一地點(diǎn)發(fā)生的兩事件的時(shí)間間隔為 4s,而乙測(cè)得這兩個(gè)事件的時(shí)間間隔為 5s求:(1) 相對(duì)于的運(yùn)動(dòng)速度(2)乙測(cè)得這兩個(gè)事件發(fā)生的地點(diǎn)間的距離解: 甲測(cè)得,乙測(cè)得,坐標(biāo)差為(1) 解出 (2) 負(fù)號(hào)表示 4.7 6000m 的高空大氣層中產(chǎn)生了一個(gè)介子以速度=0.998c飛向地球假定該介子在其自身靜止系中的壽命等于其平均壽命210-6s試分別從下面兩個(gè)角度,即地球上的觀測(cè)者和介子靜止系中觀測(cè)者來(lái)判斷介子能否到達(dá)地球解: 介子在其自身靜止系中的壽命是固有(本征)時(shí)間,對(duì)地球觀測(cè)者,由于時(shí)間膨脹效應(yīng),其壽命延長(zhǎng)了衰變前經(jīng)歷的時(shí)間為這段時(shí)間飛行距離為因,故該介子能到達(dá)地球或在介子靜止系中,介子是靜止的地球則以速度接近介子,在時(shí)間內(nèi),地球接近的距離為經(jīng)洛侖茲收縮后的值為:,故介子能到達(dá)地球4.8 設(shè)物體相對(duì)S系沿軸正向以0.8c運(yùn)動(dòng),如果S系相對(duì)S系沿x軸正向的速度也是0.8c,問物體相對(duì)S系的速率是多少?解: 根據(jù)速度合成定理,, 49 飛船以0.8c的速度相對(duì)地球向正東飛行,飛船以0.6c的速度相對(duì)地球向正西方向飛行當(dāng)兩飛船即將相遇時(shí)飛船在自己的天窗處相隔2s發(fā)射兩顆信號(hào)彈在飛船的觀測(cè)者測(cè)得兩顆信號(hào)彈相隔的時(shí)間間隔為多少?解: 取為系,地球?yàn)橄?,自西向東為()軸正向,則對(duì)系的速度,系對(duì)系的速度為,則對(duì)系(船)的速度為發(fā)射彈是從的同一點(diǎn)發(fā)出,其時(shí)間間隔為固有時(shí),題3-14圖中測(cè)得的時(shí)間間隔為: 4.10 (1)火箭和分別以0.8c和0.6c的速度相對(duì)地球向+和-方向飛行試求由火箭測(cè)得的速度(2)若火箭相對(duì)地球以0.8c的速度向+方向運(yùn)動(dòng),火箭的速度不變,求相對(duì)的速度 解: (1)如圖,取地球?yàn)橄?,為系,則相對(duì)的速度,火箭相對(duì)的速度,則相對(duì)()的速度為:或者取為系,則,相對(duì)系的速度,于是相對(duì)的速度為:(2)如圖,取地球?yàn)橄担鸺秊橄?,系相?duì)系沿方向運(yùn)動(dòng),速度,對(duì)系的速度為,由洛侖茲變換式相對(duì)的速度為:相對(duì)的速度大小為速度與軸的夾角為題3-15圖4.11 靜止在S系中的觀測(cè)者測(cè)得一光子沿與軸成角的方向飛行另一觀測(cè)者靜止于S系,S系的軸與軸一致,并以0.6c的速度沿方向運(yùn)動(dòng)試問S系中的觀測(cè)者觀測(cè)到的光子運(yùn)動(dòng)方向如何?解: 系中光子運(yùn)動(dòng)速度的分量為由速度變換公式,光子在系中的速度分量為光子運(yùn)動(dòng)方向與軸的夾角滿足在第二象限為在系中,光子的運(yùn)動(dòng)速度為 正是光速不變4.12 (1)如果將電子由靜止加速到速率為0.1c,須對(duì)它作多少功?(2)如果將電子由速率為0.8c加速到0.9c,又須對(duì)它作多少功?解: (1)對(duì)電子作的功,等于電子動(dòng)能的增量,得J=(2) ) 4.13 子靜止質(zhì)量是電子靜止質(zhì)量的207倍,靜止時(shí)的平均壽命=210-6s,若它在實(shí)驗(yàn)室參考系中的平均壽命= 710-6s,試問其質(zhì)量是電子靜止質(zhì)量的多少倍?解: 設(shè)子靜止質(zhì)量為,相對(duì)實(shí)驗(yàn)室參考系的速度為,相應(yīng)質(zhì)量為,電子靜止質(zhì)量為,因由質(zhì)速關(guān)系,在實(shí)驗(yàn)室參考系中質(zhì)量為:故 4.14 一物體的速度使其質(zhì)量增加了10%,試問此物體在運(yùn)動(dòng)方向上縮短了百分之幾?解: 設(shè)靜止質(zhì)量為,運(yùn)動(dòng)質(zhì)量為,由題設(shè) 由此二式得 在運(yùn)動(dòng)方向上的長(zhǎng)度和靜長(zhǎng)分別為和,則相對(duì)收縮量為:4.15 氫原子的同位素氘(H)和氚(H)在高溫條件下發(fā)生聚變反應(yīng),產(chǎn)生氦(He)原子核和一個(gè)中子(n),并釋放出大量能量,其反應(yīng)方程為H + HHe + n已知氘核的靜止質(zhì)量為2.0135原子質(zhì)量單位(1原子質(zhì)量單位1.60010-27kg),氚核和氦核及中子的質(zhì)量分別為3.0155,4.0015,1.00865原子質(zhì)量單位求上述聚變反應(yīng)釋放出來(lái)的能量解: 反應(yīng)前總質(zhì)量為反應(yīng)后總質(zhì)量為質(zhì)量虧損 由質(zhì)能關(guān)系得 習(xí)題五5.3 符合什么規(guī)律的運(yùn)動(dòng)才是諧振動(dòng)?分別分析下列運(yùn)動(dòng)是不是諧振動(dòng):(1)拍皮球時(shí)球的運(yùn)動(dòng);(2)如題4-1圖所示,一小球在一個(gè)半徑很大的光滑凹球面內(nèi)滾動(dòng)(設(shè)小球所經(jīng)過(guò)的弧線很 短)題4-1圖解:要使一個(gè)系統(tǒng)作諧振動(dòng),必須同時(shí)滿足以下三個(gè)條件:一 ,描述系統(tǒng)的各種參量,如質(zhì)量、轉(zhuǎn)動(dòng)慣量、擺長(zhǎng)等等在運(yùn)動(dòng)中保持為常量;二,系統(tǒng) 是在 自己的穩(wěn)定平衡位置附近作往復(fù)運(yùn)動(dòng);三,在運(yùn)動(dòng)中系統(tǒng)只受到內(nèi)部的線性回復(fù)力的作用或者說(shuō),若一個(gè)系統(tǒng)的運(yùn)動(dòng)微分方程能用描述時(shí),其所作的運(yùn)動(dòng)就是諧振動(dòng)(1)拍皮球時(shí)球的運(yùn)動(dòng)不是諧振動(dòng)第一,球的運(yùn)動(dòng)軌道中并不存在一個(gè)穩(wěn)定的平衡位置;第二,球在運(yùn)動(dòng)中所受的三個(gè)力:重力,地面給予的彈力,擊球者給予的拍擊力,都不是線 性回復(fù)力(2)小球在題4-1圖所示的情況中所作的小弧度的運(yùn)動(dòng),是諧振動(dòng)顯然,小球在運(yùn)動(dòng)過(guò)程中,各種參量均為常量;該系統(tǒng)(指小球凹槽、地球系統(tǒng))的穩(wěn)定平衡位置即凹槽最低點(diǎn),即系統(tǒng)勢(shì)能最小值位置點(diǎn);而小球在運(yùn)動(dòng)中的回復(fù)力為,如題4-1圖(b)所示題 中所述,故0,所以回復(fù)力為.式中負(fù)號(hào),表示回復(fù)力的方向始終與角位移的方向相反即小球在點(diǎn)附近的往復(fù)運(yùn)動(dòng)中所受回復(fù)力為線性的若以小球?yàn)閷?duì)象,則小球在以為圓心的豎直平面內(nèi)作圓周運(yùn)動(dòng),由牛頓第二定律,在凹槽切線方向上有令,則有5.7 質(zhì)量為的小球與輕彈簧組成的系統(tǒng),按的規(guī)律作諧振動(dòng),求:(1)振動(dòng)的周期、振幅和初位相及速度與加速度的最大值;(2)最大的回復(fù)力、振動(dòng)能量、平均動(dòng)能和平均勢(shì)能,在哪些位置上動(dòng)能與勢(shì)能相等?(3)與兩個(gè)時(shí)刻的位相差;解:(1)設(shè)諧振動(dòng)的標(biāo)準(zhǔn)方程為,則知:又 (2) 當(dāng)時(shí),有,即 (3) 5.8 一個(gè)沿軸作簡(jiǎn)諧振動(dòng)的彈簧振子,振幅為,周期為,其振動(dòng)方程用余弦函數(shù)表示如果時(shí)質(zhì)點(diǎn)的狀態(tài)分別是:(1);(2)過(guò)平衡位置向正向運(yùn)動(dòng);(3)過(guò)處向負(fù)向運(yùn)動(dòng);(4)過(guò)處向正向運(yùn)動(dòng)試求出相應(yīng)的初位相,并寫出振動(dòng)方程解:因?yàn)?將以上初值條件代入上式,使兩式同時(shí)成立之值即為該條件下的初位相故有5.9 一質(zhì)量為的物體作諧振動(dòng),振幅為,周期為,當(dāng)時(shí)位移為求:(1)時(shí),物體所在的位置及此時(shí)所受力的大小和方向;(2)由起始位置運(yùn)動(dòng)到處所需的最短時(shí)間;(3)在處物體的總能量解:由題已知 又,時(shí),故振動(dòng)方程為 (1)將代入得方向指向坐標(biāo)原點(diǎn),即沿軸負(fù)向(2)由題知,時(shí),時(shí) (3)由于諧振動(dòng)中能量守恒,故在任一位置處或任一時(shí)刻的系統(tǒng)的總能量均為5.10 有一輕彈簧,下面懸掛質(zhì)量為的物體時(shí),伸長(zhǎng)為用這個(gè)彈簧和一個(gè)質(zhì)量為的小球構(gòu)成彈簧振子,將小球由平衡位置向下拉開后 ,給予向上的初速度,求振動(dòng)周期和振動(dòng)表達(dá)式解:由題知而時(shí), ( 設(shè)向上為正)又 5.11 圖為兩個(gè)諧振動(dòng)的曲線,試分別寫出其諧振動(dòng)方程題5.11圖解:由題5.11圖(a),時(shí),即 故 由題5.11圖(b)時(shí),時(shí),又 故 5.12 一輕彈簧的倔強(qiáng)系數(shù)為,其下端懸有一質(zhì)量為的盤子現(xiàn)有一質(zhì)量為的物體從離盤底高度處自由下落到盤中并和盤子粘在一起,于是盤子開始振動(dòng)(1)此時(shí)的振動(dòng)周期與空盤子作振動(dòng)時(shí)的周期有何不同?(2)此時(shí)的振動(dòng)振幅多大?(3)取平衡位置為原點(diǎn),位移以向下為正,并以彈簧開始振動(dòng)時(shí)作為計(jì)時(shí)起點(diǎn),求初位相并寫出物體與盤子的振動(dòng)方程解:(1)空盤的振動(dòng)周期為,落下重物后振動(dòng)周期為,即增大(2)按(3)所設(shè)坐標(biāo)原點(diǎn)及計(jì)時(shí)起點(diǎn),時(shí),則碰撞時(shí),以為一系統(tǒng)動(dòng)量守恒,即則有 于是(3) (第三象限),所以振動(dòng)方程為5.13 有一單擺,擺長(zhǎng),擺球質(zhì)量,當(dāng)擺球處在平衡位置時(shí),若給小球一水平向右的沖量,取打擊時(shí)刻為計(jì)時(shí)起點(diǎn),求振動(dòng)的初位相和角振幅,并寫出小球的振動(dòng)方程解:由動(dòng)量定理,有 按題設(shè)計(jì)時(shí)起點(diǎn),并設(shè)向右為軸正向,則知時(shí), 0 又 故其角振幅小球的振動(dòng)方程為5.14 有兩個(gè)同方向、同頻率的簡(jiǎn)諧振動(dòng),其合成振動(dòng)的振幅為,位相與第一振動(dòng)的位相差為,已知第一振動(dòng)的振幅為,求第二個(gè)振動(dòng)的振幅以及第一、第二兩振動(dòng)的位相差題5.14圖解:由題意可做出旋轉(zhuǎn)矢量圖如下由圖知 設(shè)角,則即 即,這說(shuō)明,與間夾角為,即二振動(dòng)的位相差為.5.15 試用最簡(jiǎn)單的方法求出下列兩組諧振動(dòng)合成后所得合振動(dòng)的振幅:(1) (2)解: (1) 合振幅 (2) 合振幅 5.16 一質(zhì)點(diǎn)同時(shí)參與兩個(gè)在同一直線上的簡(jiǎn)諧振動(dòng),振動(dòng)方程為試分別用旋轉(zhuǎn)矢量法和振動(dòng)合成法求合振動(dòng)的振動(dòng)幅和初相,并寫出諧振方程。解: 其振動(dòng)方程為(作圖法略)*5.17 如題5.17圖所示,兩個(gè)相互垂直的諧振動(dòng)的合振動(dòng)圖形為一橢圓,已知方向的振動(dòng)方程為,求方向的振動(dòng)方程題5.17圖解:因合振動(dòng)是一正橢圓,故知兩分振動(dòng)的位相差為或;又,軌道是按順時(shí)針方向旋轉(zhuǎn),故知兩分振動(dòng)位相差為.所以方向的振動(dòng)方程為習(xí)題六6.6 振動(dòng)和波動(dòng)有什么區(qū)別和聯(lián)系?平面簡(jiǎn)諧波動(dòng)方程和簡(jiǎn)諧振動(dòng)方程有什么不同?又有什么聯(lián)系?振動(dòng)曲線和波形曲線有什么不同? 解: (1)振動(dòng)是指一個(gè)孤立的系統(tǒng)(也可是介質(zhì)中的一個(gè)質(zhì)元)在某固定平衡位置附近所做的往復(fù)運(yùn)動(dòng),系統(tǒng)離開平衡位置的位移是時(shí)間的周期性函數(shù),即可表示為;波動(dòng)是振動(dòng)在連續(xù)介質(zhì)中的傳播過(guò)程,此時(shí)介質(zhì)中所有質(zhì)元都在各自的平衡位置附近作振動(dòng),因此介質(zhì)中任一質(zhì)元離開平衡位置的位移既是坐標(biāo)位置,又是時(shí)間的函數(shù),即(2)在諧振動(dòng)方程中只有一個(gè)獨(dú)立的變量時(shí)間,它描述的是介質(zhì)中一個(gè)質(zhì)元偏離平衡位置的位移隨時(shí)間變化的規(guī)律;平面諧波方程中有兩個(gè)獨(dú)立變量,即坐標(biāo)位置和時(shí)間,它描述的是介質(zhì)中所有質(zhì)元偏離平衡位置的位移隨坐標(biāo)和時(shí)間變化的規(guī)律當(dāng)諧波方程中的坐標(biāo)位置給定后,即可得到該點(diǎn)的振動(dòng)方程,而波源持續(xù)不斷地振動(dòng)又是產(chǎn)生波動(dòng)的必要條件之一(3)振動(dòng)曲線描述的是一個(gè)質(zhì)點(diǎn)的位移隨時(shí)間變化的規(guī)律,因此,其縱軸為,橫軸為;波動(dòng)曲線描述的是介質(zhì)中所有質(zhì)元的位移隨位置,隨時(shí)間變化的規(guī)律,其縱軸為,橫軸為每一幅圖只能給出某一時(shí)刻質(zhì)元的位移隨坐標(biāo)位置變化的規(guī)律,即只能給出某一時(shí)刻的波形圖,不同時(shí)刻的波動(dòng)曲線就是不同時(shí)刻的波形圖6.7 波源向著觀察者運(yùn)動(dòng)和觀察者向波源運(yùn)動(dòng)都會(huì)產(chǎn)生頻率增高的多普勒效應(yīng),這兩種情況有何區(qū)別?解: 波源向著觀察者運(yùn)動(dòng)時(shí),波面將被擠壓,波在介質(zhì)中的波長(zhǎng),將被壓縮變短,(如題6.7圖所示),因而觀察者在單位時(shí)間內(nèi)接收到的完整數(shù)目()會(huì)增多,所以接收頻率增高;而觀察者向著波源運(yùn)動(dòng)時(shí),波面形狀不變,但觀察者測(cè)到的波速增大,即,因而單位時(shí)間內(nèi)通過(guò)觀察者完整波的數(shù)目也會(huì)增多,即接收頻率也將增高簡(jiǎn)單地說(shuō),前者是通過(guò)壓縮波面(縮短波長(zhǎng))使頻率增高,后者則是觀察者的運(yùn)動(dòng)使得單位時(shí)間內(nèi)通過(guò)的波面數(shù)增加而升高頻率題6.7 圖多普勒效應(yīng)6.8 已知波源在原點(diǎn)的一列平面簡(jiǎn)諧波,波動(dòng)方程為=cos(),其中,為正值恒量求:(1)波的振幅、波速、頻率、周期與波長(zhǎng);(2)寫出傳播方向上距離波源為處一點(diǎn)的振動(dòng)方程;(3)任一時(shí)刻,在波的傳播方向上相距為的兩點(diǎn)的位相差 解: (1)已知平面簡(jiǎn)諧波的波動(dòng)方程 ()將上式與波動(dòng)方程的標(biāo)準(zhǔn)形式比較,可知:波振幅為,頻率,波長(zhǎng),波速,波動(dòng)周期(2)將代入波動(dòng)方程即可得到該點(diǎn)的振動(dòng)方程(3)因任一時(shí)刻同一波線上兩點(diǎn)之間的位相差為 將,及代入上式,即得6.9 沿繩子傳播的平面簡(jiǎn)諧波的波動(dòng)方程為=0.05cos(10),式中,以米計(jì),以秒計(jì)求:(1)波的波速、頻率和波長(zhǎng);(2)繩子上各質(zhì)點(diǎn)振動(dòng)時(shí)的最大速度和最大加速度;(3)求=0.2m處質(zhì)點(diǎn)在=1s時(shí)的位相,它是原點(diǎn)在哪一時(shí)刻的位相?這一位相所代表的運(yùn)動(dòng)狀態(tài)在=1.25s時(shí)刻到達(dá)哪一點(diǎn)? 解: (1)將題給方程與標(biāo)準(zhǔn)式相比,得振幅,頻率,波長(zhǎng),波速(2)繩上各點(diǎn)的最大振速,最大加速度分別為(3)m處的振動(dòng)比原點(diǎn)落后的時(shí)間為故,時(shí)的位相就是原點(diǎn)(),在時(shí)的位相,即 設(shè)這一位相所代表的運(yùn)動(dòng)狀態(tài)在s時(shí)刻到達(dá)點(diǎn),則6.10 如題6.10圖是沿軸傳播的平面余弦波在時(shí)刻的波形曲線(1)若波沿軸正向傳播,該時(shí)刻,各點(diǎn)的振動(dòng)位相是多少?(2)若波沿軸負(fù)向傳播,上述各點(diǎn)的振動(dòng) 位相又是多少? 解: (1)波沿軸正向傳播,則在時(shí)刻,有題6.10圖對(duì)于點(diǎn):,對(duì)于點(diǎn):,對(duì)于點(diǎn):,對(duì)于點(diǎn):,(取負(fù)值:表示點(diǎn)位相,應(yīng)落后于點(diǎn)的位相)(2)波沿軸負(fù)向傳播,則在時(shí)刻,有對(duì)于點(diǎn):,對(duì)于點(diǎn):,對(duì)于點(diǎn):,對(duì)于點(diǎn):
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 壽司批發(fā)預(yù)定活動(dòng)方案
- 小學(xué)幫廚活動(dòng)方案
- 小學(xué)獎(jiǎng)勵(lì)活動(dòng)方案
- 小區(qū)冬季活動(dòng)方案
- 小唐游戲公司策劃方案
- 室外挑戰(zhàn)活動(dòng)方案
- 家訪連心橋活動(dòng)方案
- 家電維修闖關(guān)活動(dòng)方案
- 小學(xué)家長(zhǎng)會(huì)線上活動(dòng)方案
- 尋找春天徒步活動(dòng)方案
- 第一套路面工程考試試題及答案
- 4配電柜安全風(fēng)險(xiǎn)點(diǎn)告知牌
- 旋挖機(jī)操作手知識(shí)試卷含參考答案
- GB∕T 22590-2021 軋鋼加熱爐用耐火澆注料
- 研發(fā)部程序文件bom管理
- 大件運(yùn)輸管理制度
- Q∕GDW 11445-2015 國(guó)家電網(wǎng)公司管理信息系統(tǒng)安全基線要求
- 材料科學(xué)基礎(chǔ) 第2章 晶體結(jié)構(gòu)
- 結(jié)構(gòu)化思維PPT通用課件
- 新標(biāo)準(zhǔn)大學(xué)英語(yǔ)(第二版)綜合教程2 Unit 5 A篇練習(xí)答案及課文翻譯
- 股靜脈采血學(xué)習(xí)教案
評(píng)論
0/150
提交評(píng)論