平面向量高考復(fù)習(xí)最新版ppt課件_第1頁
平面向量高考復(fù)習(xí)最新版ppt課件_第2頁
平面向量高考復(fù)習(xí)最新版ppt課件_第3頁
平面向量高考復(fù)習(xí)最新版ppt課件_第4頁
平面向量高考復(fù)習(xí)最新版ppt課件_第5頁
已閱讀5頁,還剩51頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、一、向量的有關(guān)概念,1向量平行與直線平行有什么區(qū)別? 提示:向量平行包括向量共線(或重合)的情況,而直線平行不包括共線的情況因而要利用向量平行證明向量所在直線平行,必須說明這兩條直線不重合,二、向量的線性運算,ba,a(bc,相同,相反,0,a,aa,ab,三、共線向量定理 向量a(a0)與向量b共線的充要條件為存在唯一一個實數(shù),使,ba,2如何用向量法證明三點A、B、C共線,6)有向線段就是向量,向量就是有向線段 其中假命題的個數(shù)為() A2B3 C4D5,解析:理解基本概念的內(nèi)涵,按照定義逐個判定 (1)真命題;(2)假命題,若a與b中有一個為零向量時,其方向是不確定的;(3)真命題;(4

2、)假命題,終點相同并不能說明這兩個向量的方向相同或相反;(5)假命題,共線向量所在直線可以重合,也可以平行;(6)假命題,向量可用有向線段來表示,但并不是有向線段 答案:C,答案:A,3給出下列四個命題: 若ab,則ab;若|a|b|,則ab;若|a|b|,則ab;若ab,則|a|b|.則正確命題的個數(shù)是() A1B2C3D4 解析:中兩向量共線,則這兩向量的方向不一定相同,故不一定相等;中向量的模相等,則這兩向量不一定相等;兩向量的模相等,但方向不一定相同,故兩向量不一定相等;中,向量相等,則模一定相等,故正確 答案:A,答案:1210,5(文)設(shè)a,b是兩個不共線向量,且向量ab與2ab共

3、線,則_,考向探尋】 1與平面向量的概念有關(guān)的命題真假的判斷 2有關(guān)單位向量、相等向量、共線向量的概念問題,平面向量的有關(guān)概念,典例剖析】 (1)下列命題正確的是 Aa與b共線,b與c共線,則a與c也共線 B任意兩個相等的非零向量的始點與終點是一平行四邊形的四個頂點 C向量a與b不共線,則a與b都是非零向量 D有相同起點的兩個非零向量不平行,2)(2013宜賓模擬)給出下列命題: 兩個具有共同終點的向量,一定是共線向量; 若a與b同向,且|a|b|,則ab; ,為實數(shù),若ab,則a與b共線 其中錯誤命題的序號為_(寫出所有錯誤命題的序號,解析:(1)當b為0時,a與c不一定共線,所以A不正確;

4、由于數(shù)學(xué)中研究的向量是自由向量,所以兩個相等的非零向量可以在同一直線上,而此時就構(gòu)不成四邊形,也不可能是個平行四邊形,所以B不正確;向量的平行只要方向相同或相反即可,與起點是否相同無關(guān),所以D不正確;對于C,其條件以否定形式給出,所以可從其逆否命題入手考慮,假若a與b不都是非零向量,即a與b至少有一個是零向量,而由零向量與任意向量都共線,可得a與b共線 答案:C,2)不正確,當起點不在同一直線上時,雖然終點相同,但向量不共線;不正確,向量不能比較大??;不正確當0時,a與b可為任意向量,不一定共線綜上都不正確 答案,涉及平面向量的有關(guān)概念的命題真假判斷,準確把握概念是關(guān)鍵;掌握向量與數(shù)的區(qū)別,充

5、分利用反例進行否定也是行之有效的方法,判定兩個向量的關(guān)系時,特別注意以下兩種特殊情況: (1)零向量的方向及與其他向量的關(guān)系; (2)單位向量的長度及方向,解析:正確;數(shù)與向量的積為向量,而不是數(shù),故不正確;當ab時,|a|b|且ab,反之不一定成立,故錯誤;中,當a,b不同向時不成立,故錯誤 答案,考向探尋】 1與平面向量線性運算及性質(zhì)有關(guān)的命題 2平面向量線性運算的幾何意義的應(yīng)用,向量的線性運算,1)利用平面向量的線性運算并結(jié)合圖形可求 (2)結(jié)合圖形,利用向量加法的法則進行求解可證得結(jié)論,答案:A,考向探尋】 利用向量的共線定理判斷三點共線、兩條直線平行,共線向量定理的應(yīng)用,答案:A、B

6、、D,共線向量定理的條件和結(jié)論是充要條件,既可以證明向量共線,也可以由向量共線求參數(shù) 利用兩向量共線證明三點共線要強調(diào)有一個公共點,若a,b是兩個不共線的非零向量,則ab0的充要條件是0,這一結(jié)論的應(yīng)用非常廣泛,活學(xué)活用】 3設(shè)兩個非零向量a,b不共線,若向量kab和akb共線反向,求k的值 解:kab與akb共線反向, 存在實數(shù),使kab(akb)(0), 即(k)a(k1)b,又a,b是兩不共線的非零向量,kk10. k210. k1. 又0,k1. 即當k1時兩向量共線反向,忽視題目中的隱含條件致誤,A或C或D. 解答本題時易出現(xiàn)的錯誤是不能確定點M的位置,從而導(dǎo)致無法解題或錯選,主要原

7、因是忽視了B、C、M三點共線的條件,答案:B,活 頁 作 業(yè),謝謝觀看,現(xiàn)代人每天生活在紛繁、復(fù)雜的社會當中,緊張、高速的節(jié)奏讓人難得有休閑和放松的時光。人們在奮斗事業(yè)的搏斗中深感身心的疲憊。然而,如果你細心觀察,你會發(fā)現(xiàn)作為現(xiàn)代人,其實人們每天都在盡可能的放松自己,調(diào)整生活節(jié)奏,追求充實快樂的人生??此萍姺钡纳鐣?,人們的生活方式其實也不復(fù)雜。大家在忙忙碌碌中體味著平凡的人生樂趣。由此我悟出一個道理,那就是-生活簡單就是幸福。生活簡單就是幸福。一首優(yōu)美的音樂、一支喜愛的歌曲,會讓你心境開朗。你可以靜靜地欣賞你喜愛的音樂,可以在流蕩的旋律中回憶些什么,或者什么都不去想;你可以一個人在房間里大聲

8、的放著搖滾,也可以在網(wǎng)上用耳麥與遠方的朋友靜靜地共享;你還可以一邊放送著音樂,一邊做著家務(wù).生活簡單就是幸福。一杯清茶,或一杯咖啡,放在你的桌邊,你的心情格外的怡然。你可以瀏覽當天的報紙,了解最新的國內(nèi)外動態(tài),哪怕是街頭趣聞;或者捧一本自己喜歡的雜志、小說,從字里行間獲得那種特別的輕松和愉悅.生活簡單就是幸福。經(jīng)過精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快來品嘗,再備上最喜歡的美酒,這是多么難得的享受!生活簡單就是幸福。春暖花開的季節(jié),或是清風(fēng)送爽的金秋,你和家人一起,或是朋友結(jié)伴,走出戶外,來一次假日的郊游,享受大自然帶給你的美麗、芬芳。吸一口新鮮的空氣,忘卻都市的喧囂,身心仿佛受

9、到一番洗滌,這是一種什么樣的輕松感受!生活簡單就是幸福。你參加朋友們的一次聚會,那久違的感覺帶給你溫馨和激動,在觥酬交錯之間你享受與回味真摯的友情。朋友,是那樣的彌足珍貴.生活簡單就是幸福。周末的夜晚,一家老小圍坐在電視機旁,盡享團圓的歡樂現(xiàn)代人越來越會生活,越來越會用各種不同的方式來放松自己。垂釣、上網(wǎng)、打牌、玩球、唱卡拉OK、下棋.不一而足。人們根據(jù)自己的興趣愛好尋找放松身心的最佳方式,在相對固定的社交圈子里怡然的生活,而且不斷的擴大交往的圈子,結(jié)交新的朋友有時,你會為新添置的一套漂亮?xí)r裝而快樂無比;有時,你會為孩子的一次小考成績優(yōu)異而倍感欣慰;有時,你會為剛參加的一項比賽拿了名次而喜不自

10、勝;有時,你會為完成了上司交給的一個任務(wù)而信心大增生活簡單就是幸福!生活簡單就是幸福,不意味著我們放棄了對目標的追逐,是在忙碌中的停歇,是身心的恢復(fù)和調(diào)整,是下一步?jīng)_刺的前奏,是以飽滿的精力和旺盛的熱情去投入新的“戰(zhàn)斗”的一個“驛站”;生活簡單就是幸福,不意味著我們放棄了對生活的熱愛,是于點點滴滴中去積累人生,在平平淡淡中尋求充實和快樂。放下沉重的負累,敞開明麗的心扉,去過好你的每一天。生活簡單就是幸福!我的心徜徉于春風(fēng)又綠的江南岸,純粹,清透,雀躍,欣喜。原來,真正的愉悅感莫過于觸摸到一顆不染的初心。人到中年,初心依然,純真依然,情懷依然,幸甚至哉。生而為人,芳華剎那,真的不必太多要求,一盞

11、茶,一本書,一顆篤靜的心,三兩心靈知己,興趣愛好一二,足矣。亦舒說:“什么叫做理想生活?不用吃得太好穿得太好住得太好,但必需自由自在,不感到任何壓力,不做工作的奴隸,不受名利的支配,有志同道合的伴侶,活潑可愛的孩子,豐衣足食,已經(jīng)算是理想?!睍r間如此猝不及防,生命如此倉促,忠于自己的內(nèi)心才是真正的勇敢,以不張揚的姿態(tài),將自己活成一道獨一無二的風(fēng)景,才是最大的成功。試問,你有多久沒有靠在門檻上看月亮了,你有多久沒有在家門口的那棵大樹下乘涼了,你有多久沒有因為一個人一件事而心生感動了,你又有多久沒有審視自己的內(nèi)心了?與命運的較量中,我們被迫前行,卻忘記了來時的方向;我們習(xí)慣了飛翔,卻成了無腳的鳥。

12、年輕時我們并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最適合自己的,自己又是怎么樣的一個人?!睍r光疊加,滄桑有痕,終究懂得,漫漫人生路,得失愛恨別離,不過是生命的常態(tài)。原來,人生最曼妙的風(fēng)景,就是那顆沒被俗世河流污染的初心。大千世界,有很多的東西可以去熱愛,或許一株風(fēng)中搖曳的小草,一朵迎風(fēng)招展的小花,一條彎彎曲曲的小河,都足夠讓我們觸摸迷失的初心。紫陌紅塵,蕓蕓眾生,皆是過客。若時光允許,我愿意一生柔軟,愛了櫻桃,愛芭蕉,靜守于輪回的渡口,揣一顆云水禪心,將寂寞坐斷,將孤獨守成一幀最美的山水畫卷。一直渴盼著,與心悅的人相守于古樸的小院,守著老舊的光陰,只聞花香,不談悲

13、喜,讀書喝茶,不爭朝夕。陽光暖一點,再暖一點,日子慢一些,再慢一些,從容而優(yōu)雅地老去。浮生蕩蕩,陽春白雪,觸目橫斜千萬朵,賞心不過兩三枝;任憑弱水三千,只取一瓢飲。有夢的季節(jié),有愛的潤澤,走過的日子,都會成為筆尖溫潤如玉的詩篇。相信越是走到最后,剩下的唯有一顆向真向善向美的初心。似水流年,如花美眷,春潮帶雨晚來急,野渡無人舟自橫朝花夕拾,當回望過往,你是此生無憾,還是滿心懊悔呢?隨著芳華的流逝,我們終究會明白:任何的財富都比不上精神上的愉悅,任何的快感都不及對初心的執(zhí)著。愿你不趨炎附勢,不阿諛奉迎,不茍且偷生,不虛擲有限的年華,活出屬于自己的風(fēng)采,活在每一個當下,不忘初心,不負今生曾經(jīng)有人說,

14、成大事者必經(jīng)以下三種境界:“昨夜西風(fēng)凋碧樹,獨上高樓,望盡天涯路”,此第一境界也;“衣帶漸寬終不悔,為伊消得人憔悴”,此第二境界也;“眾里尋他千百度,驀然回首,那人卻在燈火闌珊處”,此第三境界也。我想說的是:事無大小,只要你還在堅持,成功的曙光終會毫不吝嗇地照向你有這樣一個小故事。1987年,她14歲,在湖南益陽的一個小鎮(zhèn)賣茶,1毛錢一杯。因為她的茶杯比別人大一號,所以賣得最快,那時,她總是快樂地忙碌著。她17歲,她把賣茶的攤點搬到了益陽市,并且改賣當?shù)靥赜械摹袄薏琛?。擂茶制作比較麻煩,但能賣個好價錢,她也總是忙忙碌碌。她20歲,仍在賣茶,不過賣茶的地點又變了,在省城長沙,店面也由攤點變成了小

15、店。客人進門后,必能品嘗到熱乎乎的香茶,在盡情享用后,他們或多或少會掏錢再帶上一兩袋茶葉。1997年,她24歲,長達十年的光陰,她始終在茶葉與茶水間滾打。這時,她已經(jīng)擁有37家茶莊,遍布于長沙、西安、深圳、上海等地。福建安溪、浙江杭州的茶商們一提起她的名字莫不豎起大拇指。她的最大夢想實現(xiàn)了?!霸诼?xí)慣于喝咖啡的潮流下,也有洋溢著茶葉清香的茶莊出現(xiàn),那就是我開的”說這句話時她已經(jīng)把茶莊開到了故事雖短,內(nèi)涵頗深,一件事,只有始終堅韌不拔地去做,無謂任何艱難險阻,不左右搖擺,不顧左右而言它,才能披荊斬棘,在一千次的跌倒后又一千零一次地站起來。事實上,我們在做一件事的時候,總是不自覺地放大困難,使得我們產(chǎn)生畏懼之心,沒有了乘風(fēng)破浪的豪情與氣魄。困難并不可怕,可怕的是我們沒有直面困難的勇氣。面對著被自己放大了的困難,我們需要有的就是堅持

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論