版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、想學好理論力學局必須總結(jié)好好總結(jié),學習靜力學基礎靜力學是研究物體平衡一般規(guī)律的科學。這里所研究的平衡是指物體在某一慣性參考系下處于靜止狀態(tài)。物體的靜止狀態(tài)是物體運動的特殊形式。根據(jù)牛頓定律可知,物體運動狀態(tài)的變化取決于作用在物體上的力。那么在什么條件下物體可以保持平衡,是一個值得研究并有廣泛應用背景的課題,這也是靜力學的主要研究內(nèi)容。本章包括物體的受力分析、力系的簡化、剛體平衡的基本概念和基本理論。這些內(nèi)容不僅是研究物體平衡條件的重要基礎,也是研究動力學問題的基礎知識。一、 力學模型在實際問題中,力學的研究對象(物體)往往是十分復雜的, 因此在研究問題時,需要抓住那些帶有本質(zhì)性的主要因素,而略
2、去影響不大的次要因素,引入一些理想化的模型來代替實際的物體, 這個理想化的模型就是力學模型。理論力學中的力學模型有質(zhì)點、質(zhì)點系、剛體和剛體系。質(zhì)點:具有質(zhì)量而其幾何尺寸可忽略不計的物體。質(zhì)點系:由若干個質(zhì)點組成的系統(tǒng)。剛體:是一種特殊的質(zhì)點系,該質(zhì)點系中任意兩點間的距離保持不變。剛體系:由若干個剛體組成的系統(tǒng)。對于同一個研究對象,由于研究問題的側(cè)重點不同,其力學模型也會有所不同。例如:在研究太空飛行器的力學問題的過程中,當分析飛行器的運行軌道問題時,可以把飛行器用質(zhì)點模型來代替; 當研分析飛行器在空間軌道上的對接問題時,就必須考慮飛行器的幾何尺寸和方位等因素,可以把飛行器用剛體模型來代替。當研
3、究飛行器的姿態(tài)控制時,由于飛行器由多個部件組成,不僅要考慮它們的幾何尺寸,還要考慮各部件間的相對運動,因此飛行器的力學模型就是質(zhì)點系、剛體系或質(zhì)點系與剛體系的組合體。二、 基本定義力是物體間相互的機械作用,從物體的運動狀態(tài)和物體的形狀上看,力對物體的作用效應可分為下面兩種。外效應:力使物體的運動狀態(tài)發(fā)生改變。內(nèi)效應:力使物體的形狀發(fā)生變化(變形)。對于剛體來說,力的作用效應不涉及內(nèi)效應。剛體上某個力的作用,可能使剛體的運動狀態(tài)發(fā)生變化,也可能引起剛體上其它力的變化。fbafbnfanfbf bfbna faffbn(a)(b)圖 11ww例如一重為 w 的箱子放在粗糙的水平地面上(如圖 1-1
4、a 所示),人用力水平推箱子,當推力 f 為零時,箱子靜止,只受重力 w 和地面支撐力fan , fbn 的作用。當推力由小逐步增大時,箱子可能還保持靜止狀態(tài),但地面作用在箱子上的力就不僅僅是支撐力,還要有摩擦力faf , fbf 的作用(如圖 1-1b)。隨著推力的逐步增大,箱子的運動狀態(tài)就會發(fā)生變化,箱子可能平行移動,也可能繞 a 點轉(zhuǎn)動,或既有移動又有轉(zhuǎn)動。靜力學就是要研究物體在若干個力作用下的平衡條件。為此,需要描述作用于物體上力的類型和有關物理量的定義等。力系:作用在物體上若干個力組成的集合,記為f1 , f2 ,l, fn 。力偶:一種特殊的力系,該力系只有兩個力構成f , f ,
5、其中f = -f (大小相等,方向相反),且兩個力的作用線不重合。有時力偶也用符號m 表示,如圖 1-2 所示。dffmm(a)(b)(c)圖 1-2等效力系:若力系f1, f2 ,l, fn 和力系p1, p2 ,l, pm對同一剛體產(chǎn)生相同的作用效果(運動、約束力等),稱這兩個力系是等效力系,記為f1 , f2 ,l, fn p1 , p2 ,l, pm 。平衡力系:不產(chǎn)生任何作用效果的力系。例如一個剛體上沒有力的作用并且在慣性系下處于靜止,那么這個剛體將永遠保持靜止狀態(tài);若這個剛體在某個力系作用下仍然保持靜止,這樣的力系就是平衡力系。由于平衡力系作用的效果與沒有任何力作用的效果相同,所以
6、平衡力系也稱為零力系。通常平衡力系表示成f1 , f2 ,l, fn = 0。合力:與一個力系等效的力稱為該力系的合力。記為fr f1 , f2 ,l, fn 如力fr 是力系f1 , f2 ,l, fn 的合力,則力fi (i = 1,l, n) 稱為fr 的分力。將一個力系用其合力來代替的過程稱為力的合成,將合力代換成幾個分力的過程稱為力的分解。矢量矩:設 a 是一個矢量, r 是由參考點 o 到矢量 a 始端的矢徑(如圖 1-3a 所示),矢量 a 對 o 點的矩定義為:(1-1)mo = mo ( a) = r arafr(a)(b)o由上式可以看出,矢量矩也是一個矢量。應用矢量矩的概
7、念, 如果把矢量 a 置換成力的矢量f , r 是由 o 點到力的作用點的矢徑(如圖 1-3b 所示),就可以得到力對 o 點之矩的定義。力對 o 點的矩:mo = m o (f ) = r f 。設f1 , f2 ,l, fn 是作用在某一剛體上的力系,力系的主矢和對 o點的主矩定義成:n主矢: fr = fi ,主矩:i=1nmo = ri fii=1一般情況,力系對不同點的主矩是不相同的,設m a 和m b 分別是力系對任意兩點 a、b 的主矩,若用rba 表示從 b 點到 a 點的矢徑,根據(jù)主矢和主矩的定義,利用矢量運算可以推導出的下列關系:(1-2)m b = m a + rba f
8、r當力系給定后,力系的主矢是一個不變量,稱為第一不變量。力系對某一點的主矩隨著取矩點的不同而變化,并有關系式(1-2),將該式兩邊點積力系的主矢fr 可得m b fr = m a fr + (rba fr ) fr = m a fr由于 a、b 是任意兩點,這說明力系對任意一點的主矩與力系主矢的點積是一個不變量,這個量稱為第二不變量。力偶f , f 是一種特殊的力系(如圖 1-2 所示),這個力系的主矢fr 0 ,由(1-2)式可知,力偶對任意點的主矩都是相同的。因此我們把力偶對任意一點的主矩稱為力偶矩,力偶矩的矢量運算可根據(jù)力系對某點 o 的主矩定義得到:mo = ra f + rb f =
9、 rba f(1-3)三、 靜力學公理靜力學公理是從實踐中得到的,是靜力學的基礎。根據(jù)這些公理并利用數(shù)學工具可以推導出力系的平衡條件。公理一(二力平衡原理)剛體在二個力作用下平衡的充分必要條件是此二力大小相等,方向相反,作用線重合。該原理還可表示成f1, f2 = 0。對于剛體,二力平衡原理總是成立的,但對于非剛體(變形體或某些剛體系)則不一定成立。例如圖 1-4a 所示的系統(tǒng),在 a、b 兩點作用有等值、反向、共線的兩個力,當這兩個力的大小均為 f = f0 sinat (其中f0,a為常值)時,此時系統(tǒng)是不平衡的,因為即使系統(tǒng)的初始狀態(tài)是靜止的,那么在這兩個力的作用下,系統(tǒng)的運動狀態(tài)會發(fā)生
10、變化。如果把彈簧換為剛性連桿(圖 1-4b),則系統(tǒng)可視為一個剛體。在這兩個力的作用下,系統(tǒng)的運動狀態(tài)不會發(fā)生變化(若初始靜止,在這個力系的作用下還將保持靜止)。ababffff(a)(b)公理二(加減平衡力系原理)在作用于剛體上的任意力系中, 加上或減去任何平衡力系,都不改變原力系對剛體的作用效應。該原理可表示成:若p1 , p2 ,l, pm 0,則f1 , f2 ,l, fn f1 , f2 ,l, fn , p1 , p2 ,l, pm 公理三(力的平行四邊形合成法則)作用在物體上某一點的兩個力可以用作用在該點的一個合力來代替,此合力的大小和方向可由這兩個力為鄰邊所構成的平行四邊形的對
11、角線來確定。公理四(作用與反作用定律)任何兩個物體間的相互作用力總是同時存在,并且等值、反向、共線,分別作用在兩個物體上。公理四實際上就是牛頓第三定律,該定律與參考系的選取無關, 也就是說,對于慣性參考系和非慣性參考系,公理四都是成立的。公理五(剛化原理)變形體在某一力系作用下處于平衡時,如將該變形體剛化為剛體,則平衡狀態(tài)保持不變。圖 1-4a 所示系統(tǒng),如果在兩個力作用下處于平衡,那么若使彈簧剛度系數(shù)k + ,也就是將彈簧換成剛性桿(如圖 1-4b 所示),系統(tǒng)仍然可以保持平衡。但反之不成立。公理五說明,剛體的平衡條件,只是變形體平衡的必要條件,而不是充分條件。上述 5 個公理中,有些對剛體
12、是成立的,有些對物體是成立的, 對物體成立的公理對剛體一定成立,反之則不然。四、 約束與約束力工程中的一些物體可在空間自由運動,這些物體稱為自由體,例如空中的飛機、衛(wèi)星等。另一些物體其運動受到某些限制,這些物體稱為非自由體,如跑道上的飛機、公路上的汽車、鐵道上的火車等。約束:限制物體運動的條件。構成約束的物體稱為約束體,約束體對物體的作用力稱為約束力。那些大小和方向與約束無關的力稱為主動力。工程中常見的約束有柔索類約束、光滑面約束、各種鉸鏈約束、二力桿約束和固定端約束等。不同類型的約束,對物體運動的限制條件則不同,所產(chǎn)生的約束力的方向也有所不同,如繩索產(chǎn)生的約束力是沿著繩索的方向,且只能受拉力
13、;二力構件產(chǎn)生的約束力的方向是沿二力構件上兩個力的作用點的連線,既可以受拉力也可以受壓力;除滑動鉸鏈支座外,鉸鏈的約束力的方向是不能確定的;固定端的約束力實際上是一個分布力(可簡化成一個力和一個力偶)。掌握各種類型約束的特點,畫出研究對象的受力圖,是研究力學問題(包括靜力學和動力學)的必要基礎。值得注意的是,約束力(或力偶)是根據(jù)約束類型的特點畫的,除繩索和光滑面約束外,僅根據(jù)約束類型的特點,無法確定約束力(或力偶)的具體方向,更不能確定其大小,只有利用平衡原理或平衡條件才能最終確定它們的大小和方向。五、 靜力學定理在此,我們把由靜力學中的定義和公理(或定律)推出的一些結(jié)論稱為定理。定理 1
14、作用在剛體上的力沿其作用線移動到任一點,不改變其作用效應。f 2 + f 2 + f 2xyz這個定理實際上是公理一和公理二的推論。對于物體,力的作用效應與力的三要素(大小、方向和作用點)有關。根據(jù)定理 1 可知, 作用在剛體上的力,其三要素是力的大小、方向和作用線,力對剛 體的作用效應則與這三個要素有關。對同一個剛體而言,力的三個 要素不同,力的作用效應也就不同。力可以用矢量f 表示為f = fxi + fyj + fz kf = f =cosa= fxfcosa= fy,fcosa= fz,f其中fx , fy , fz 為力在 x、y、z 軸上的投影, f 或 f表示力矢量的模,a,a,
15、a為力矢量與三個坐標軸的夾角。因此,力這個矢量的模可以表 示其大小,矢量的方向可以用來表示力的方向(指向),但不能確定作用線的位置,還應該用另它一個量來確定力的作用線。力矢量f 和力對 o 點之矩m o (f ) 是力對剛體作用效應的度量。給定了矢量f ,就能確定力的大小和指向,再給定剛體在空間的位置和取矩點 o 的位置后,根據(jù)矢量m o (f ) 就可以確定力的作用線(無論力的作用點是作用線上的哪一點,力對 o 點的矩都是不變的,如圖 1-5 所示)。drfo圖 15定理 2(合力矩定理)設作用在剛體上的力系f1 , f2 ,l, fn 存在合力fr ,則有:nmo (fr ) = mo (
16、fi )i=1定理 3(力對點之矩與力對軸之矩的關系定理)力對某一軸的矩等于力對這一軸上任一點之矩在該軸上的投影。在數(shù)學上有這樣的定理,即某一矢量對任意軸的矩等于該矢量對這一軸上任一點之矩在該軸上的投影。定理 3 只是這個定理在力學中的一個應用,同樣在研究動量矩時,也會有類似的應用。定理 4(力的平移定理)作用于剛體上任意一點的力可平移到剛體上其它任何一點,若不改變對剛體的作用效應,必須增加一個附加力偶,其力偶矩等于原力對新作用點的矩。定理 5(力系等效定理)作用于剛體上的兩個力系f1 , f2 ,l, fn 和p1 , p2 ,l, pm 等效的條件是:nmnmfi =pi mo (fi )
17、 = mo (pj )i=1j=1,i=1j=1該定理可根據(jù)牛頓定律和有關力系等效的定義推導出來。實際上該定理是力系等效的基本定理,定理 1 和定理 4 都可由該定理推導出來。由定理 5 還可以推導出力偶的等效條件,由于力偶是一個特殊的力系,它的主矢恒等于零,而且對任意一點的主矩也相同,因此可由定理 5 推出力偶等效的條件。定理 6(力偶等效條件)作用于剛體上的兩個力偶等效的條件是它們的力偶矩相等。由這個定理可以得到力偶的下列性質(zhì)。力偶的性質(zhì):性質(zhì)一力偶不能與一個力等效(即力偶無合力),因此也不能與一個力平衡。性質(zhì)二力偶可在其作用面內(nèi)轉(zhuǎn)動,或平移到另一平行面上, 而不改變對剛體的作用效應(如圖
18、 1-6a、b 所示)。性質(zhì)三若改變力偶中的力和力偶臂的大小,而不改變力偶的轉(zhuǎn)向和力偶矩的大小,則力偶對剛體的作用效應不會改變(如圖 1-6c 所示, 其中fd = f1d1 )。dfffdfdffdff()()dfd1f 1ff1() 圖 1-6定理 7(三力平衡定理)作用于剛體上的三個力若平衡,則這三個力的作用線必共面,或是平行,或是相交于一點。由該定理可推出這樣的結(jié)論:作用于剛體上共面的三個力若平衡, 如果它們不平行,則必匯交于一點。六、 力系的簡化作用在剛體上力系f1 , f2 ,l, fn 向某一點 a 簡化實際上是確定一個與原力系等效的簡化力系,這個簡化力系一般由一個作用線通過簡化
19、點 a 的力和一個力偶構成,這個力的大小和指向由原力系的主矢fr 確定,而這個力偶的力偶矩由原力系對 a 點的主矩m a 來確定,將該簡化力系記為fr , m a 。同理原力系f1 , f2 ,l, fn 也可以向另一個簡化點 b 簡化,得到另一個簡化力系是fr , m b 。這兩個簡化力系均是由一個力和一個力偶構成,這兩個簡化力系中的力(不包括力偶)的大小和指向都是相同的,只是作用線不同,一個過簡化點a,另一個過簡化點 b,在一般情況下,兩個簡化力系中的力偶m a 和m b 的力偶矩是不同的,但它們滿足關系式(1-2)。力系f1 , f2 ,l, fn 簡化的最后結(jié)果有以下四種情況:(1)
20、力系簡化為一合力偶若fr = 0, mo 0 ,則力系等價于一個力偶,其力偶矩等于該力系對簡化點 o 的主矩。(2) 力系簡化為一合力若fr 0, mo= 0 ,則該力系等價于一個力,力的大小和方向由力系的主矢確定,力的作用線過 o 點。若fr 0, mo 0, fr mo ,則該力系等價于一個力,力的大小和方向由力系的主矢確定,力的作用線不過 o 點, 而過 o點(o點如何確定請讀者自己思考)。(3) 力系簡化為力螺旋若fr 0, mo力螺旋。(4) 力系平衡若fr = 0, mo 0, 且fr , mo 互不垂直,則力系等價于一個= 0 ,則力系等價于一個零力系(平衡力系)。由此可知力系是
21、平衡力系的充分必要條件是:力系的主矢和對某一點的主矩均為零。同理,根據(jù)定理 6 和平衡力系的定義,也可以得到上述力系的平衡條件。剛體的定點運動與一般運動剛體的定點運動與一般運動屬于剛體的三維運動,在本章首先研究其運動學,然后在研究其動力學一、定點運動剛體的運動學剛體的定點運動:剛體在運動時,如果其或其延展體上有一點不動, 則稱這種運動為剛體的定點運動。(1) 剛體定點運動的運動方程。確定定點運動剛體在空間的位置可用歐拉(euler)角表示,它們分別是進動角a,章動角a,自轉(zhuǎn) 角a。剛體定點運動的運動方程為a(121)f1 (t),af 2 (t),af3 (t)(2) 剛體定點運動的角速度和角
22、加速度。定點運動剛體的角速度可表示成w w w w(122)剛體角速度w矢量平行于瞬時轉(zhuǎn)軸。定點運動剛體的角加速度定義為:w dw dt(123)一般情況下角速度矢量w的大小和方向都隨時間變化,因此角加速度矢量w和角速度矢量w不平行。(3) 定點運動剛體上各點的速度和加速度。定點運動剛體上任意點m 的速度可表示成v = w r(124)其中:r 為由定點 o 引向點 m 的矢徑。定點運動剛體上任意點 m 的加速度可表示成a = w r +w v(125)上式中等號右端第一項ar = w r 定義為轉(zhuǎn)動加速度,第二項a n = w v 定義為向軸加速度。(4) 剛體定點運動的位移定理:定點運動剛
23、體的任何有限位移,可以繞過定點的某一軸經(jīng)過一次轉(zhuǎn)動而實現(xiàn)。二、定點運動剛體的動力學(1) 定點運動剛體的動量矩。定點運動剛體對固定點 o 的動量矩定義為:lo = r vdm = r (w r)dmmm(126)其中: r, v 分別為剛體上的質(zhì)量微團dm 的矢徑和速度,w為剛體的角速度。當隨體參考系的三個軸ox, oy, oz 為慣量主軸時,上式可表示成lo = j xax i+ j y ay j+ j z az k(127)(2) 定點剛體的歐拉動力學方程。應用動量矩定理可得到定點運動剛體的歐拉動力學方程j x & x + (j z - j y )ay az = m x j a&+ (j-
24、 j )aa = m y y xz z xy j z & z + (j y - j x )axay = m z (128)(3) 陀螺近似理論。繞質(zhì)量對稱軸高速旋轉(zhuǎn)的定點運動剛體成為陀螺。若陀螺繞的自旋角速度為w,進動角速度為w , j z 為陀螺對質(zhì)量對稱軸的轉(zhuǎn)動慣量,則陀螺的動力學方程為w j z w= m o(129)其中m o 是作用在陀螺上的力對 o 點之矩的矢量和。三、剛體的一般運動(1) 剛體一般運動的運動學。確定一般運動剛體在空間的位置,需要確定剛體上任意一點 o(基點)的坐標xo , yo , zo 和剛體相對基點作定點運動的三個歐拉角a,a,a。一般運動剛體的運動方程為xo
25、 f1 (t), yo f 2 (t), zo f3 (t)a f 4(t),af5(t),af6 (t)(1210)(2) 一般運動剛體上任意一點的速度和加速度。一般運動剛體上任意一點 m 的速度可表示成vm = vo +w r(1211)其中vo 為基點o 的速度, r 為由o 引向 m 點的矢徑,w為剛體的角速度。一般運動剛體上任意一點 m 的加速度可表示成am = ao +w r+w vm(1212)其中ao 為基點o 的加速度。(3) 剛體一般運動的運動微分方程。剛體一般運動的運動微分方程可由質(zhì)心運動定理和相對質(zhì)心的動量矩定理得到。靜力學理論的應用應用靜力學的基本理論與方法研究物體系
26、統(tǒng)的平衡是本章的基本內(nèi)容,其中包括:剛體系統(tǒng)的平衡問題;桁架的平衡問題,考慮摩擦時物體的平衡問題等。一、靜定與靜不定問題在研究剛體或剛體系統(tǒng)的平衡問題中,如果未知量(包括: 約束力,平衡位置等)的數(shù)目等于系統(tǒng)獨立的平衡方程的數(shù)目時, 所有未知量均可由平衡方程唯一地求解出來,這樣的問題稱為靜定問題;如果未知量的數(shù)目大于系統(tǒng)獨立的平衡方程的數(shù)目時,未知量不能由平衡方程唯一地求解出來(有時只能求出部分未知量),這樣的問題稱為靜不定問題。從數(shù)學角度來看,判斷系統(tǒng)的靜定與靜不定問題,是根據(jù)系統(tǒng)未知量的數(shù)目與獨立平衡方程數(shù)目的關系來確定。從力學角度來看,靜不定問題,一般是系統(tǒng)存在某種多余的約束。例如圖3-
27、1 所示系統(tǒng)是靜定的,因為鉸鏈 a、b 處的約束力(三個未知量) 可由三個獨立的平衡方程完全確定;而圖 3-2 所示系統(tǒng)是靜不定的,因為在水平方向存在多余的約束,a、b 處的約束力為四個未知量,獨立的平衡方程只有三個,不能唯一地求出所有的未知量,但可以求出部分未知量,如可以求出約束力在鉛垂方向的兩個分量,而在水平方向的兩個分量不能唯一地確定。f2f1abmf2f1a bm圖 31圖 32二、剛體系統(tǒng)的平衡問題在一般情況下,對于靜定的剛體系統(tǒng),其獨立的平衡方程數(shù)目等于系統(tǒng)中每個剛體的獨立平衡方程數(shù)目之和,由這組平衡方程可求得剛體系統(tǒng)中所有未知量,但求解聯(lián)立的代數(shù)方程組,計算量較大,通常利用計算機
28、進行數(shù)值求解。在理論力學的課程學習中,則側(cè)重強調(diào)基本理論與基本方法的理解與掌握。在求解剛體系統(tǒng)的平衡問題時,突出強調(diào)靈活恰當?shù)剡x取研究對象,對研究對象進行受力分析,建立平衡方程,并盡量避免求解聯(lián)立方程, 最好一個方程求解一個未知量。三、平面桁架的平衡問題桁架是特殊的剛體系統(tǒng),其特點是構成桁架的各個部件均抽象成二力桿。求解桿件內(nèi)力或約束力時的思想方法與求解剛體系統(tǒng)平衡問題的相同,只是在分析過程中要利用二力桿的特點。求解桁架平衡問題的基本方法有:(1) 節(jié)點法:以桁架的節(jié)點為研究對象,通過求解平衡方程, 確定桿件內(nèi)力的方法。(2) 截面法:將桁架沿某一面截出一部分作為研究對象,應用平衡方程求解桿的
29、內(nèi)力的方法。四、考慮摩擦時的平衡問題1、滑動摩擦兩個相接觸的物體有相對滑動或滑動趨勢時,在接觸處有阻礙其滑動的力,這種力稱為滑動摩擦力?;瑒幽Σ恋姆诸惣捌涮攸c:(1) 物體處于靜止但有滑動趨勢時,存在靜滑動摩擦力 f。摩擦力的方向:與相對滑動趨勢的方向相反。摩擦力的大?。?0 f fmax ,由平衡方程確定。最大靜摩擦力的大小由庫侖定律確定,即: fmax = f s fn ,其中 f s 為靜滑動摩擦因數(shù)(可由手冊查出), fn 為法向約束力的大小。當摩擦力達到最大值時,摩擦點即將產(chǎn)生滑動,這種狀態(tài)稱為臨界狀態(tài)(2) 當物體滑動時,存在動滑動摩擦力 f。摩擦力的方向:與相對滑動的方向相反。摩
30、擦力的大?。?f =向約束力的大小。ffn ,其中 f 為動滑動摩擦因數(shù), fn 為法2、摩擦角與摩擦自鎖將約束面對物體的全反力fr (fr = f + fn ) 的作用線與法向約束力作用線的夾角記為a,如圖 3-3a 所示;達到臨界狀態(tài)時的全反力frfnafr (fr = fmax + fn ) 的作用線與法向約束力作用線的夾角記為am ,稱為摩擦角,如圖 3-3b 所示,并有關系式tanam = f s 。frfnamffmax(a) (b)圖 3-3由前述可知,全反力的作用線總在摩擦角以內(nèi)。當作用在物體上主動力的作用線也在摩擦角的范圍內(nèi)時,無論主動力的大小如何變化,物體總保持平衡而不滑動
31、,這種現(xiàn)象稱為摩擦自鎖。摩擦自鎖條件是a am 。3、滾動摩阻當兩個相接觸的物體有相對滾動或滾動趨勢時,在接觸處除了有摩擦力外,還存在滾動摩擦力偶 m,這個力偶稱為滾阻力偶。(1) 物體處于靜止但有滾動趨勢時,存在滾阻力偶m。滾阻力偶的轉(zhuǎn)向:與滾動趨勢的轉(zhuǎn)向相反。滾阻力偶矩的大?。?0 m m max ,由平衡方程確定。最大滾阻力偶矩的大小由關系式m max = a fn 確定,其中a為滾阻系數(shù)(可由手冊查出), fn 為法向約束力的大小。當滾阻力偶達到最大值時,物體即將滾動,這種狀態(tài)也稱為臨界狀態(tài)。(2) 當物體滾動時,存在滾阻力偶 m。滾阻力偶的轉(zhuǎn)向:與滾動轉(zhuǎn)向相反。滾阻力偶矩的大?。航?/p>
32、地由關系式m max = a fn 確定。虛位移原理虛位移原理提供了靜力學問題的一種全新的解法,它還是分析力學的基礎。虛位移原理是設計用來消除平衡方程中的約束力,主要是用來求解平衡系統(tǒng)的主動力之間的關系或平衡位置。另外,通過解除約束,將內(nèi)力或約束力轉(zhuǎn)化為主動力,則虛位移原理也可用來求解內(nèi)力和約束力,而且這比以前的列平衡方程的常規(guī)方法更有效。一、力的功元功:力在微小位移上所做的功稱為元功。其數(shù)學表達式為:aw = f vdt 或aw = f dr ,其中v 和dr 分別為力f 作用點的速度和微小位移。變力在曲線路徑上做的功可以用曲線積分計算。等效力系做功定理: 等效力系在剛體的位移上所做的功相等
33、。nm即:若f1 ,l, fn = p1 ,l, pm ,則w (fi ) = w (pj ) 。i=1j =1在計算力的功時,為計算方便,可以利用上述定理。例如:圖 4-1(a)所示鼓輪上纏繞有柔索,在力 f(大小和方向不變)作用下在地面上純滾動。計算在輪心沿直線移動s 距離過程中力 f 所做的功。(a) (b)圖 4-1由于力 f 的作用點的位移不易計算,我們可將 f 平移到輪心, 同時附加一力偶m (其力偶矩的大小為m = fr ,如圖 41b 所示)以保持力系等效,即f = f , m。新的力系f , m 在輪心沿直線移動s 距離過程中所作的功較易計算:w = fs cosa+ ma,
34、其中:a為圓盤輪心移動 s 距離時,圓盤轉(zhuǎn)動的角度,即a 是上式可寫成s ,于rw = fs cosa+ fr sr它等于在輪心沿直線位移s 距離過程中力 f 所做的功。二、約束及其分類約束:對質(zhì)點或質(zhì)點系運動所加的限制。如某質(zhì)點被限制在固定曲面上運動,則該質(zhì)點就是受到了約束。約束體對被約束體的運動是通過力的作用(稱為約束力)來加以限制的,但是約束與受力是應區(qū)別對待的兩個不同概念,這可以通過下面的例子來區(qū)分.ooaxoya(a) (b)(c)圖 4-2對圖 4-2 中所示的系統(tǒng):在(a)中,質(zhì)點 a 被固定在剛性桿上并球鉸鏈連接接在固定點o。顯然質(zhì)點 a 受到了約束,因為質(zhì)點 a 的運動被限制
35、在一個固定球面上(球面中心在 o 點,半徑為桿長 l),它的運動受到了限制。在(b)中,將剛桿換成了一條不可伸長的柔索,則質(zhì)點 a 仍然受到了約束,因為質(zhì)點 a 被限制在一個固定球面內(nèi)運動(這是一個單面約束,約束方程用不等式表示),它不能運動到球面之外。在(c)中,剛桿又換成了彈簧,則質(zhì)點 a 就變成了一個自由質(zhì)點。盡管它受彈簧力的作用,但它的運動沒有受到限制,理論上它可以 運動到空間中任何一個位置,所以圖(c)中的質(zhì)點 a 沒受到約束。總而言之,受約束質(zhì)點必然受力,但受力不等于受約束。三、約束的分類約束如按系統(tǒng)的實際結(jié)構進行分類,也就是從物理方面來進行 分類,就有了柔索類、鉸鏈類、光滑面支撐
36、類、固定端類等。另外, 約束的理想與非理想之分,也是從物理方面來分類的。約束如按約束方程的形式,也就是從數(shù)學方面來進行分類,我們就有單面與雙面之分、定常與非定常之分、幾何(完整)與非完整之分。四、自由度與廣義坐標自由度:自由度是確定質(zhì)點系的空間位置所需的獨立參數(shù)的個數(shù)。對于一個具有 n 個質(zhì)點的自由質(zhì)點系,可用各點的空間坐標來確定它的空間位置,所以它的自由度是 3n。如果給該質(zhì)點系再加上 k 個獨立的雙面幾何約束:fi (x1 , y1 , z1 ,., xn , yn , zn , t) = 0, i = 1,., k則由于通過該方程組可將其中的 k 個坐標表示成另外 3n-k 個坐標參數(shù)(
37、獨立)的函數(shù),所以該受約束質(zhì)點系的自由度為 3n-k。對于圖 4-2(a)所示的質(zhì)點,如果 o 處是球鉸,它的約束方程(質(zhì)點到球鉸 o 的距離為桿長)的個數(shù)是 1,所以該系統(tǒng)的自由度是 3-1=2。如果將 o 換成柱鉸,則約束方程則為x2 + y2 + z2 - l 2 = 0z = 0有兩個約束方程,則系統(tǒng)的自由度就是 3-2=1。對于圖 4-1(b)所示的質(zhì)點,由于這是一個單面約束,當柔索未拉直時,質(zhì)點的運動未受到限制,確定質(zhì)點 a 的位置仍需要它的三個空間坐標,所以它的自由度是 3;當柔索處于拉直狀態(tài)時,質(zhì)點的運動受到限制,可列寫一個等式約束方程,所以其自由度是 2。對于圖 4-1(c)
38、所示的質(zhì)點,由于彈簧不構成約束,所以自由度是 3。對于剛體系統(tǒng),了解各種運動狀況下的剛體所具有的自由度對于判定系統(tǒng)的自由度是有幫助的,下面列出各種運動的剛體所具有的自由度??臻g運動的自由剛體:6空間平動的剛體:3定點轉(zhuǎn)動的剛體:3平面運動的剛體:3定軸轉(zhuǎn)動的剛體:1對于剛體系統(tǒng),也可以用位置參數(shù)減去獨立(雙面)約束方程個數(shù)的方法判定自由度。下面以例示之。如圖 4-3 所示的平面運動機構,兩輪被限制在水平直線上作純滾動,桿 ac 與桿 bc 之間以(柱)鉸鏈連接,桿與輪之間也用(柱)鉸鏈連接。確定系統(tǒng)的自由度。分析:該系統(tǒng)由兩根桿和兩個輪組成,計有 4 個平面運動剛體,每個平面運動剛體需 3 個
39、位置參數(shù),該機構共需 43=12 個參數(shù)描述其位置。但是這 12 個位置參數(shù)又受以下約束:a圖 4-3桿 ac 與桿 bc 的c 點位置坐標重疊:可列 2 個幾何約束方程(x 坐標與 y 坐標);桿 ac 與輪 a 的輪心 a 點位置坐標重疊:可列 2 個幾何約束方程(x 坐標與 y 坐標);桿 bc 與輪 b 的輪心 b 點位置坐標重疊:可列 2 個幾何約束方程(x 坐標與 y 坐標);輪 a 作純滾動:可列 1 個可積的運動約束(相當于 1 個幾何約束)方程;輪 b 作純滾動:可列 1 個可積的運動約束(相當于 1 個幾何約束)方程;輪 a 中心 a 作直線運動:可列 1 個幾何約束方程;
40、 輪 b 中心 b 作直線運動:可列 1 個幾何約束方程。這樣一來,系統(tǒng)約束方程的個數(shù)為 10,則整個系統(tǒng)的自由度為:12- 10=2。也可以這樣來判定:通過觀察,ac 桿與 bc 桿間的夾角q 可決定系統(tǒng)的形狀,一旦q 確定,則輪 a 的中心坐標 xa 可決定系統(tǒng)的位置及兩輪的轉(zhuǎn)角,故描述該系統(tǒng)的位置獨立參數(shù)可取(xa ,a) ,所以這是一個 2 自由度系統(tǒng)。廣義坐標:確定系統(tǒng)位置或形狀的獨立參數(shù)。系統(tǒng)的自由度是唯一的,但確定位置或形狀的獨立參數(shù)卻有多 種取法,故廣義坐標的取法不唯一,但是廣義坐標的個數(shù)是確定的。當系統(tǒng)受到完整約束時,廣義坐標的個數(shù)等于系統(tǒng)的自由度數(shù)。例如在上面的例子中,可以
41、取(xa ,a) 為廣義坐標,或取(xb ,a) 為廣義坐標,也可以取兩輪的輪心的水平位置坐標(xa , xb ) 為廣義坐標, 因為它們都是獨立參數(shù)。但不能取輪心 a 的坐標和輪 a 的轉(zhuǎn)角(xa ,aa ) 為廣義坐標,因為這兩者不獨立。位形空間:廣義坐標構成的空間稱為位形空間,也稱構形空間。位形空間中的點描述了質(zhì)點系的位置或形狀。取質(zhì)點系的廣義坐標為q1,., qk ,則(q1 ,., qk ) 就是位形空間。五、虛位移與虛功虛位移:在給定瞬時,質(zhì)點或質(zhì)點系為約束容許的任何無限小位移。在靜力學中,考慮的是完整、雙面、定常約束,但在動力學中, 盡管運動中的質(zhì)點系大都也是受定常約束,但也可能
42、受非定常約束 (即約束方程中顯含時間 t)。對于定常約束,有無“給定瞬時”沒有區(qū)別,但對于非定常約束,“給定瞬時”意味著什么呢?我們以下面的例子來闡明這個概念。對于一個限制在固定曲面上 f(x,y,z)=0 上的質(zhì)點 m,它的虛位移是在 m 點的切面上任意方向的無限小位移,而 m 的無限小實位移會和某個方向上的虛位移重合。如果該曲面在運動,不妨設在 z 方向以速度 v 平動:f(x,y,z- vt)=0。這種情況下,“給定瞬時”的虛位移就是在給定時刻,曲面所 在位置 m 點的切面上任意方向的無限小位移。相當于將正在運動的曲面在該瞬時“定格”,然后考慮該“固定曲面”所容許的無限小位移(如圖 4-
43、4)。在數(shù)學上,意味著時間 t 的變分為零:t=0。對于定常約束,無限小實位移同某一方向的虛位移重合,但對非定常約束,無限小實位移不同任何虛位移重合。t 時刻曲面所處位置虛功:虛功是力在質(zhì)點系的虛位移上所做的功.虛功是一個假想的功,按定義,虛位移是微小位移,所以虛功屬于元功。理想約束:約束力虛功之和等于零的約束。理論力學中常見的理想約束有: 光滑(固定或移動)支撐面約束和滾動鉸鏈支座; 光滑固定鉸鏈支座和軸承; 連接物體的光滑鉸鏈; 無重剛桿; 連接兩物體的不可伸長的柔索; 不計滾動摩擦阻力時,剛體在(固定或移動)曲面上的無滑動的滾動。虛位移原理:具有定常、雙面、完整、理想約束的質(zhì)點系,其平衡
44、的充要條件是,對于系統(tǒng)的任何一個虛位移,作用于質(zhì)點系上的所有主動力所做的虛功之和等于零。虛位移原理寫成數(shù)學表達式:aw = fi ari = 0(41)其中ari 是主動力fi 的作用點的虛位移。由此建立的方程也可稱為平衡方程。對于一個受約束的質(zhì)點系,各ari 并不是獨立的。所以在實際應用中必須補充一組虛位移的約束方程。所以,虛位移原理就將求平衡問題轉(zhuǎn)化為求虛位移的關系問題。仔細審視一下虛位移原理,請注意其中加點的“任意”二字。在對多自由度系統(tǒng)實際應用虛位移原理時,可以選取幾個特殊的虛位移,令主動力做的虛功之和為零,以建立平衡方程。如果所選取的虛位移是線性無關的,則得到的平衡方程就是獨立的。對
45、于多自由度系統(tǒng),用虛位移原理建立的平衡方程的個數(shù)等于系統(tǒng)的自由度。六、求解虛位移之間的關系如果質(zhì)點系的約束方程具有形式fi (x1 , y1 , z1 ,., xn , yn , zn , t) = 0, i = 1,., k則各質(zhì)點的虛位移之間滿足如下關系:nj( fi axx+ fi ayyjf+ i azzj ) = 0, i = 1,., kj =1jjj對于理論力學中常見的剛體系統(tǒng),剛體的約束條件是:對于剛體上的任何兩點,有:2ri - rj= 常量,即:剛體上任意兩點間的距離保持為常量。上式還可表示成:(ri - rj ) (ri - rj ) = 常量對于上式兩邊取變分,則有:
46、2(ri - rj ) (ari -arj ) = 0即:ari (ri - rj ) = arj (ri - rj )由此,我們得到一個重要結(jié)論:剛體上任意兩點的虛位移在它們的連線上的投影相等。這是剛體系統(tǒng)常用的一個虛位移關系(也稱投影定理)。根據(jù)上述投影定理可以得到下面兩個推論:推論 1:對于可作平面運動的剛體(此時剛體視為平面圖形),若已知在給定瞬時其上 a、b 兩點虛位移垂線相交于 p 點(如圖 45a 所示),則在該瞬時,剛體上的 p 點的虛位移為零。推論 2:對于可作平面運動的剛體(此時剛體視為平面圖形),若已知在給定瞬時其上 a、b 兩點虛位移的垂線相互平行且不相交(如圖45b
47、所示),則在該瞬時,剛體上所有點的虛位移都相同。arabaparbarbaraba(b)(a)圖 45由推論 1 可知,在該瞬時,剛體的虛位移可視為繞 p 點作定軸轉(zhuǎn)動,其轉(zhuǎn)角為aara = arb,由推論 2 可知,在該瞬時,剛體的虛位移是apbp平移。七、廣義力取質(zhì)點系的廣義坐標為q1,., qk ,設質(zhì)點系有虛位移(aq1 ,.,aqk ) ,則作用在質(zhì)點上的所有力(f1 ,., fn ) 所做的虛功之和可以寫成如下形式:nnkawi = (fixaxi +fiyayi + fizazi ) = qjaq j i=1i=1j =1其中:(xi , yi , zi ) 是力fi 的作用點位
48、置的直角坐標,它是廣義坐標q1,., qk 的函數(shù)。qj 稱為對應于廣義坐標qj 的廣義力,它的表達式為nqj =(fixi=1 xi +qjfiy yi qj+ fiz zi ), j = 1,., kqj(42)虛位移原理的一個直接推論是:具有定常、雙面、完整、理想約束的質(zhì)點系,其平衡的充要條件是,對應于所有廣義坐標的廣義力都等于零。力場:力場是一個空間。當質(zhì)點(系)所受力完全由其所在位置決定,這樣的空間稱為力場。勢力場:如果場力所做的功與質(zhì)點經(jīng)過的路徑無關,這樣的力場稱為勢力場或保守力場,相應的場力稱為有勢力或保守力。常見的有勢力有:重力、彈性力、萬有引力等。阻力不是有勢力,因為它們做的
49、功與路徑有關。它們甚至不能構成力場,因為阻力的大小和方向取決于質(zhì)點(系)的速度。即使象動滑動摩擦力在平面上可以大小保持不變,但其方向卻得由質(zhì)點(系)的速度方向來決定。勢函數(shù):決定勢力場中力的函數(shù),也稱力函數(shù)。記質(zhì)點系的位形空間為(q1 ,., qk ) ,記勢力場的力函數(shù)為u = u (q1 ,., qk ) ,則質(zhì)點系在勢力場中的廣義力為:q = u , ( j = 1,., k )jqj勢函數(shù)可以相差一個常數(shù)而不改變勢力場中的力。勢能:質(zhì)點(系)從某一位置或形狀簡稱位形a 移動(或變形)到基準位形 ao ,有勢力所做的功,稱為質(zhì)點系在該位形的勢能?;鶞饰恍蔚膭菽転榱?。要注意的是,由于基準位
50、形是勢能函數(shù)的參考點,它必須是一固定的位形。就如同描述位置的參考點必須是確定點一樣。勢能函數(shù)常記為v = v (q1 ,., qk ) ,勢力場的廣義力與勢能函數(shù)的關系是:q = - v , ( j = 1,., k )jqj(43)八、平衡位置的穩(wěn)定性平衡位置也稱平衡解,它是動力學系統(tǒng)的一個特解。如果初始條件適當,系統(tǒng)將保持在這個平衡位置。當系統(tǒng)在平衡位置受到微小擾動時(即對初始條件做微小改變),如果相應的動力學方程的解仍保持在平衡位置的鄰近區(qū)域,則稱該平衡位置是穩(wěn)定的。穩(wěn)定性研究是動力學理論中一個重要的研究領域。對于處于有勢力場中的受理想約束的系統(tǒng),有一個關于平衡位置的穩(wěn)定性的重要判據(jù):如
51、果系統(tǒng)的勢能函數(shù)在平衡位置具有嚴格的局部極小值, 則該平衡狀態(tài)是穩(wěn)定的。我們可以給該判據(jù)一個力學解釋:由于勢能函數(shù)在平衡位置取嚴格的局部極小值,平衡位置周圍的勢能都高于平衡位置的勢能, 當系統(tǒng)在平衡位置受到擾動而離開平衡點時,由于機械能守恒,它必須消耗動能來獲得較高勢能,這樣當擾動微小時它沒有足夠的能量遠離平衡位置,只能在平衡位置附近運動,所以平衡位置穩(wěn)定。與上述判據(jù)相應的是,成立這樣的一個不穩(wěn)定性命題:如果系統(tǒng)的勢能函數(shù)在平衡位置具有嚴格的局部極大值,則該平衡狀態(tài)是不穩(wěn)定的。在勢力場中,質(zhì)點系平衡的充分必要條件是:v = 0,q j( j = 1,l, k )勢力場中系統(tǒng)的平衡位置的穩(wěn)定性的
52、判斷過程是:首先通過勢能的駐點(一階導數(shù)為零)求出系統(tǒng)的平衡位置;然后判斷勢能在該駐點是否取極小值。點的運動學點的運動學研究是物體上的某個點(或質(zhì)點)在空間的位置隨時間的變化規(guī)律,它既是研究質(zhì)點動力學的預備知識,又是研究物體一般運動的基礎。運動都是相對的,要描述物體的運動就必須選取另一個物體作為參考,這個被選作參考的物體稱為參考體,與參考體固連的坐標系稱為參考系。點的運動學研究點相對某參考體的運動規(guī)律,包括點的運動方程、速度、加速度以及它們之間的關系。研究點的運動,常用的方法有:矢量法、直角坐標法和自然坐標法。在研究某些問題時,需要在不同的參考系中觀察或描述點的運動, 這些不同的參考系之間還存在有相對運動;有時可以把一些較復雜的運動分解成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度共享型出租房水電費智能監(jiān)控合同4篇
- 2025年度倉儲物流中心建設承包合同范本4篇
- 2025電力施工合同范本
- 2025關于北京租房合同模板
- 建筑工程勞務合同樣本簡單版4
- 餐飲合作協(xié)議書合同簡約版
- 2025版企業(yè)上市納稅擔保及財務顧問服務合同3篇
- 2025年度木地板品牌形象設計與推廣合同4篇
- 《汽車環(huán)保標準介紹》課件
- 2025版外墻清洗作業(yè)質(zhì)量驗收及保修合同樣本3篇
- 保險專題課件教學課件
- 牛津上海版小學英語一年級上冊同步練習試題(全冊)
- 室上性心動過速-醫(yī)學課件
- 建設工程法規(guī)及相關知識試題附答案
- 中小學心理健康教育課程標準
- 四年級上冊脫式計算400題及答案
- 新課標人教版小學數(shù)學六年級下冊集體備課教學案全冊表格式
- 人教精通版三年級英語上冊各單元知識點匯總
- 教案:第三章 公共管理職能(《公共管理學》課程)
- 諾和關懷俱樂部對外介紹
- 保定市縣級地圖PPT可編輯矢量行政區(qū)劃(河北省)
評論
0/150
提交評論