外文文獻及翻譯 基于多數據融合傳感器的分布式溫度控制系統(tǒng)中英對照_第1頁
外文文獻及翻譯 基于多數據融合傳感器的分布式溫度控制系統(tǒng)中英對照_第2頁
外文文獻及翻譯 基于多數據融合傳感器的分布式溫度控制系統(tǒng)中英對照_第3頁
外文文獻及翻譯 基于多數據融合傳感器的分布式溫度控制系統(tǒng)中英對照_第4頁
外文文獻及翻譯 基于多數據融合傳感器的分布式溫度控制系統(tǒng)中英對照_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、基于多數據融合傳感器的分布式溫度控制系統(tǒng)摘要: 在過去的幾十年,溫度控制系統(tǒng)已經被廣泛的應用。對于溫度控制提出了一種基于多傳感器數據融合和can總線控制的一般結構。一種新方法是基于多傳感器數據融合估計算法參數分布式溫控系統(tǒng)。該系統(tǒng)的重要特點是其共性,其適用于很多具體領域的大型的溫度控制。實驗結果表明該系統(tǒng)具有較高的準確性、可靠性,良好的實時性和廣泛的應用前景。關鍵詞: 分布式控制系統(tǒng);can總線控制;智能can節(jié)點;多數據融合傳感器。1介紹 分布式溫度控制系統(tǒng)已經被廣泛的應用在我們日常生活和生產,包括智能建筑、溫室、恒溫車間、大中型糧倉、倉庫等。這種控制保證環(huán)境溫度能被保持在兩個預先設定的溫度

2、間。在傳統(tǒng)的溫度測量系統(tǒng)中,我們用一個基于溫度傳感器的單片機系統(tǒng)建立一個rs-485局域網控制器網絡。借助網絡,我們能實行集中監(jiān)控和控制.然而,當監(jiān)測區(qū)域分布更廣泛和傳輸距離更遠,rs-485總線控制系統(tǒng)的劣勢更加突出。在這種情況下,傳輸和響應速度變得更低,抗干擾能力更差。因此,我們應當尋找新的通信的方法來解決用rs-485總線控制系統(tǒng)而產生的問題。在所有的通訊方式中,適用于工業(yè)控制系統(tǒng)的總線控制技術,我們可以突破傳統(tǒng)點對點通信方式的限制、建立一個真正的分布式控制與集中管理系統(tǒng),can總線控制比rs-485總線控制系統(tǒng)更有優(yōu)勢。比如更好的糾錯能力、改善實時的能力,低成本等。目前,它正被廣泛的應

3、用于實現分布式測量和范圍控制。 隨著傳感器技術的發(fā)展,越來越多的系統(tǒng)開始采用多傳感器數據融合技術來提高他們的實現效果。多傳感器數據融合是一種范式對多種來源整合數據,以綜合成新的信息,比其他部分的總和更加強大。無論在當代和未來,系統(tǒng)的低成本,節(jié)省資源都是傳感器中的一項重要指標。2分布式架構的溫度控制系統(tǒng) 分布式架構溫度控制系統(tǒng)如圖中所示的圖1??梢钥闯?,這系統(tǒng)由兩個模塊兩個智能can節(jié)點和一個主要的控制器組成。每個模塊部分執(zhí)行進入分布式架構。下面的是簡短的描述下各模塊。3.1主要控制器 作為系統(tǒng)的主要控制器,這主pc能和智能can節(jié)點通信。它致力于監(jiān)督和控制整個系統(tǒng),系統(tǒng)配置、顯示運行狀況、參數

4、初始化和協(xié)調各部分間的關系。更重要的是,我們能打印或儲存系統(tǒng)的歷史溫度的數據,這對分析系統(tǒng)性能是非常有用的。3.2智能can節(jié)點 每一個溫度控制系統(tǒng)的智能can節(jié)點有五個部分:mcu一個單片機,a/d轉換單元,溫度監(jiān)測單元傳感器群,數字顯示器,激發(fā)器一個冷卻單元和供暖單元。接下來介紹智能can節(jié)點的工作原理。 在實際操作中,我們劃分控制的目標進入一些單元,儲存智能can節(jié)點在一些典型的單元。在每個節(jié)點,單片機借助a / d轉換單位從溫度測量傳感器收集溫度數據。同時,它執(zhí)行基本的數據融合運算獲得運算的結果,更接近實際。數字顯示器及時顯示融合節(jié)點的結果,所以我們能及時了解在每個控制單元所處的環(huán)境溫

5、度。 通過比較融合值用主控制器構建一個,這樣智能can節(jié)點可以通過相應的加熱或冷卻裝置實現反饋控制各單元。如果在特別的智能can節(jié)點融合結果大于設定值,冷卻單位將開始工作。相反,如果在節(jié)點融合的結果低于設定值加熱單位將開始工作。用這種方法,我們不僅能監(jiān)控環(huán)境溫度,還能做相應的觸發(fā)器來實現溫度的自動調節(jié)。與此同時,每個can節(jié)點發(fā)送數據幀到can總線,can總線將告知在著單元中的主控制器這溫度值,那么這控制器能便利的作出是否修改這參數的決定。自從這can節(jié)點有調節(jié)溫度的單元在,整個房間的溫度將保持均勻。更重要的是,我們也可以通過在主pc上修改溫度的設定值來控制這智能節(jié)點。 一般來說,處理器不擅長

6、即時的復雜的數據處理和數據融合,所以如何選擇合適的數據融合算法對系統(tǒng)變得至關重要。后一節(jié)中,我們將介紹適合于智能can節(jié)點的數據融合方法。4.多傳感器數據融合 旨在利用數據融合在分布式溫度控制系統(tǒng)中來消除不確定性,獲得更精確、可靠是比從限定的傳感器的測量數據的算數平均值更重要。當一些傳感器的溫度傳感器變?yōu)闊o效的,這智能can節(jié)點還可以通過熔斷這些信息而從有用的傳感器獲得精確溫度。4.1實測數據的一致性核實 在我們設計的分布式溫度控制系統(tǒng)的溫度測量的過程中,突發(fā)性干擾或設備故障的影響不可避免的產生測量誤差。所以在數據融合前我們應該消除錯誤的誤差。 我們可以利用系統(tǒng)中配備的少量傳感器用散點圖發(fā)消除

7、這個測量誤差。用參數來代表數據分布結構包括中值tm,上四位數 fv,下四位數fl和分散四位數df. 人們認為每個傳感器在溫度控制系統(tǒng)的溫度測量所得獨立。在系統(tǒng)中,有八個傳感器在各智能can節(jié)點的溫度傳感器群。所以我們在每個can節(jié)點同一時刻能獲得8個溫度值。我們安排收集到的溫度數據序列由小到大:t1, t2, , t8 在序列中,t1是最低位而t8是最高位。我們定義tm為: 上四位數fv是區(qū)間tm, t8的中值,低四位數 fl是區(qū)間t1, tm的中值,這四位數的離散是:。 該公式,一個是常數,取決于系統(tǒng)測量誤差, 通常值是0.5,1.0,2.0等等。在數列中其余的測量值都被看作是于有效值一致的

8、。在智能can節(jié)點的單片機智將把一致的測量值融合。5. 溫度測量的數據融合的舉例 分布式溫度控制系統(tǒng)運用于一間溫室, 我們從8個溫度傳感器獲得一組8個溫度值如下八個溫度測量值的結果把在這溫室中的八個溫度的平均值和真實的溫度值做比較,我們可以知道測量誤差是+ 0.5。之后在介紹這個方法前我們消除從這第五個傳感器的測量誤差,我們能得到的剩余的七個數據的平均值(7)t = 29.6, 測量誤差是-0.4.這剩下的七個傳感器被分成兩個傳感器組,s1, s3, s7 是第一組,s2, s4, s6, s8 是第二組。兩組測量數據的算術平均和標準偏差分別如下: 根據公式(13), 我們可以用七個測量溫度確

9、定溫度融合值。融合溫度的結果的誤差是-0.3。 很明顯,數據融合測量結果比算術的平均值更接近于實際值。在實際操作中,測量溫度可能是很分散的變得更大的監(jiān)測區(qū)域,數據融合將更加明顯提高了測量精度。6.總結 這基于多數據融合傳感器的分布式溫度控制系統(tǒng)是通過can總線構建。它充分利用了fdcs即時總線控制系統(tǒng)的特點。數據采集,數據融合,系統(tǒng)控制用智能can節(jié)點得到實現,而系統(tǒng)管理通過主控制器(host pc)被實現。通過使用can總線與數據融合技術系統(tǒng)的可靠性和實時的能力被大大提高了。我們確定它在將來會得到廣泛的應用。distributed temperature control system bas

10、ed on multi-sensor data fusionabstract: temperature control system has been widely used over the past decades. in this paper, a general architecture of distributed temperature control system is put forward based on multi-sensor data fusion and can bus. a new method of multi-sensor data fusion based

11、on parameter estimation is proposed for the distributed temperature control system. the major feature of the system is its generality, which is suitable for many fields of large scale temperature control. experiment shows that this system possesses higher accuracy, reliability, good realtime charact

12、eristic and wide application prospectkeywords: distributed control system; can bus; intelligent can node; multi-sensor data fusion.1. introduction distributed temperature control system has been widely used in our daily life and production, including intelligent building, greenhouse, constant temper

13、ature workshop, large and medium granary, depot, and so on1. this kind of system should ensure that the environment temperature can be kept between two predefined limits. in the conventional temperature measurement systems we build a network through rs-485 bus using a single-chip metering system bas

14、ed on temperature sensors. with the aid of the network, we can carry out centralized monitoring and controlling. however, when the monitoring area is much more widespread and transmission distance becomes farther, the disadvantages of rs-485 bus become more obvious. in this situation, the transmissi

15、on and response speed becomes lower, the anti-interference ability becomes worse. therefore, we should seek out a new communication method to solve the problems produced by rs-485 bus.during all the communication manners, the industrial control-oriented field bus technology can ensure that we can br

16、eak through the limitation of traditional point to point communication mode and build up a real distributed control and centralized management system. as a serial communication protocol supporting distributed real-time control, can bus has much more merits than rs-485 bus, such as better error corre

17、ction ability, better real-time ability, lower cost and so on. presently, it has been extensively used in the implementation of distributed measurement and control domains. with the development of sensory technology, more and more systems begin to adopt multi-sensor data fusion technology to improve

18、 their performances. multi-sensor data fusion is a kind of paradigm for integrating the data from multiple sources to synthesize the new information so that the whole is greater than the sum of its parts 345. and it is a critical task both in the contemporary and future systems which have distribute

19、d networks of low-cost, resource-constrained sensors2. distributed architecture of the temperature control system the distributed architecture of the temperature control system is depicted in the figure 1. as can be seen, the system consists of two modulesseveral intelligent can nodes and a main con

20、troller. they are interconnected with each other through can bus. each module performs its part into the distributed architecture. the following is a brief description of each module in the architecture. 31main controlleras the systems main controller, the host pc can communicate with the intelligen

21、t can nodes. it is devoted to supervise and control the whole system, such as system configuration, displaying running condition, parameter initialization and harmonizing the relationships between each part. whats more, we can print or store the systems history temperature data, which is very useful

22、 for the analysis of the system performance3.2. intelligent can node each intelligent can node of the temperature control system includes five units: mcua single chip, a/d conversion unit, temperature monitoring unitsensor group, digital display unit and actuatorsa cooling unit and a heating unit. t

23、he operating principle of the intelligent can node is described as follows. in the practical application, we divide the region of the control objective into many cells, and lay the intelligent can nodes in some of the typical cells. in each node, mcu collects temperature data from the temperature me

24、asurement sensor groups with the aid of the a/d conversion unit. simultaneously, it performs basic data fusion algorithms to obtain a fusion value which is more close to the real one. and the digital display unit displays the fusing result of the node timely, so we can understand the environment tem

25、perature in every control cell separately. by comparing the fusion value with the set one by the main controller, the intelligent can node can implement the degenerative feedback control of each cell through enabling the corresponding heating or cooling devices. if the fusion result is bigger than t

26、he set value in the special intelligent can node, the cooling unit will begin to work. on the contrary, if the fusion result is less than the set value in the node the heating unit will begin to work. by this means we can not only monitor the environment temperature, but also can make the correspond

27、ing actuator work so as to regulate the temperature automatically. at the same time every can node is able to send data frame to the can bus which will notify the main controller the temperature value in the cell so that controller can conveniently make decisions to modify the parameter or not. sinc

28、e the can nodes can regulate the temperature of the cell where they are, the temperature in the whole room will be kept homogeneous. whats more, we can also control the intelligent node by modifying the temperatures setting value on the host pc.generally, the processors on the spot are not good at c

29、omplex data processing and data fusing, so it becomes very critical how to choose a suitable data fusion algorithm for the system. in the posterior section, we will introduce a data fusion method which is suitable for the intelligent can nodes。4. multi-sensor data fusion the aim to use data fusion i

30、n the distributed temperature control system is to eliminate the uncertainty, gain a more precise and reliable value than the arithmetical mean of the measured data from finite sensors. furthermore, when some of the sensors become invalid in the temperature sensor groups, the intelligent can node ca

31、n still obtain the accurate temperature value by fusing the information from the other valid sensors. 4.1. consistency verification of the measured data during the process of temperature measurement in our designed distributed temperature control system, measurement error comes into being inevitably

32、 because of the influence of the paroxysmal disturb or the equipment fault. so we should eliminate the careless mistake before data fusion. we can eliminate the measurement errors by using scatter diagram method in the system equipped with little amount of sensors. parameters to represent the data d

33、istribution structure include mediantm, upper quartile numberfv, lower quartile numberfl and quartile dispersiondf. it is supposed that each sensor in the temperature control system proceeds temperature measurement independently. in the system, there are eight sensors in each temperature sensor grou

34、p of the intelligent can node. so we can obtain eight temperature values in each can node at the same time. we arrange the collected temperature data in a sequence from small to large: t1, t2, , t8 in the sequence, t1 is the limit inferior and t8 is the limit superior. we define the mediantm as: (1)

35、 the upper quartilefv is the median of the interval tm, t8.the lower quartile numberfl is the median of the interval t1, tm.the dispersion of the quartile is: (2)we suppose that the data is an aberration one if the distance from the median is greater than adf, that is, the estimation interval of inv

36、alid data is: (3) in the formula, a is a constant, which is dependent on the system measurement error, commonly its value is to be 0.5, 1.0, 2.0 and so on. the rest values in the measurement column are considered as to be the valid ones with consistency. and the single-chip in the intelligent can no

37、de will fuse the consistent measurement value to obtain a fusion result 5. temperature measurement data fusion experiment by applying the distributed temperature control system to a greenhouse, we obtain an array of eight temperature values from eight sensors as followsthe mean value of the eight me

38、asurement temperature result iscomparing the mean value (8)t with the true temperature value in the cell of the greenhouse, we can know that the measurement error is +0.5. after we eliminate the careless error from the fifth sensor using the method introduced before, we can obtain the mean value of

39、the rest seven data (7)t=29.6, the measurement error is -0.4. the seven rest consistent sensor can be divided into two groups with sensor s1, s3, s7 in the first group and sensor s2, s4, s6, s8 in the second one. the arithmetical mean of the two groups of measured data and the standard deviation are

40、 as follows respectively:according to formula (13), we can educe the temperature fusion value with the seven measured temperature value. the error of the fusion temperature result is -0.3. it is obvious that the measurement result from data fusion is more close to the true value than that from arith

41、metical mean. in the practical application, the measured temperature value may be very dispersive as the monitoring area becomes bigger, data fusion will improve the measuring precision much more obviously.6. conclusions the distributed temperature control system based on multi-sensor data fusion is constructed through can bus. it takes full advantage of the characteristics of field bus control system-fdcs. data acquisition, data fusion and system controlling is carr

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論