運動的綜合凸輪和齒輪_第1頁
運動的綜合凸輪和齒輪_第2頁
運動的綜合凸輪和齒輪_第3頁
運動的綜合凸輪和齒輪_第4頁
運動的綜合凸輪和齒輪_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、爸徑濰呲蕉酪勵魏誒杉庥腆鮑揠外文翻譯:娉盤烷販戾二艮蓼鵯萋揖髡磯丫Kinematic Synthesis ,Cams and Gears托廒檔夾鐐片傣咦露淼身賤攖揮 Mechanisms form the basic geometrical elements of many mechanical devices including automatic packaging machinery, typewriters, mechanical toys, textile machinery, and others. A mechanism typically is designed to crea

2、te a desired motion of a rigid body relative to a reference member. Kinematic design, or kinematic syntheses, of mechanisms often is the first step in the design of a complete machine. When forces are considered, the additional problems of dynamics, bearing loads, stresses, lubrication, and the like

3、 are introduced, and the larger problem becomes one of machine design.捶嵫霏諢升跫倘甾糅你屮粵虱儡 A kinematician defined kinematics as “the study of the motion of mechanisms and methods of creating them.” The first part of this definition deals with kinematic analysis. Given a certain mechanism, the motion chara

4、cteristics of its components will be determined by kinematic analysis. The statement of the tasks of analysis contains all principal dimensions of the mechanism, the interconnections of its links, and the specification of the input motion or method of actuation. The objective is to find the displace

5、ments, velocities, accelerations, shock or jerk (second acceleration) , and perhaps higher accelerations of the various members, as well as the paths described and motions performed by certain elements. In short, in kinematic analysis we determine the performance of a given mechanism. The second par

6、t of definition may be paraphrased in two ways:野圈粼喝仄軹成釜貝秕俺刨酞棵1. The study of methods of creating a given motion by means of mechanisms.砍鋈逑事纜鲞瓤遮矧熔聚蘭耐跡2. The study of methods of creating mechanisms having a given motion.縱零遨唁藍(lán)澄瑕散沈嚶緦纊踺泰In either version, the motion is given and the mechanism is to be fo

7、und. This is the essence of kinematic synthesis. Thus kinematic synthesis deals with the systematic design of mechanisms for a given performance. The area of synthesis may be grouped into two categories.皂嗓殼鐾冀旗耱嶸蟋氬啷庇退覓1. Type synthesis. Given the required performance, what type of mechanism will be s

8、uitable? (Gear trains? Linkages? Cam mechanisms? ) Also, how many links should the mechanism have? How many degrees of freedom are required? What configuration id desirable? And so on. Deliberations involving the number of links and degrees of freedom are often referred to as the province of a subca

9、tegory of type synthesis called number synthesis.剪桑凡篷俄田瑾溽翹莠舜圍獻要2. Dimensional synthesis. The second major category of kinematic synthesis is best defined by way of its objective: Dimensional synthesis seeks to determine the significant dimensions and the starting position of a mechanism of preconcei

10、ved type for a specified task and prescribed performance.卞粵侵糜最徽讞慚商軸倥陂愜肖Significant dimensions mean link lengths or distances on binary, ternary, and so on, links, angles between axis, cam-contour dimensions and cam-follower diameters, eccentricities, gear rations, and so forth. A mechanism of precon

11、ceived type may be a slider-crank linkage, a four-bar linkage, a cam with flat follower, or a more complex linkage of a certain configuration defined topologically but not dimensionally. There are three customary tasks for kinematic synthesis: function generation, path generation and motion generati

12、on.壙親灸蘸躬肝淥誒濤鮞詞搭伐鎪In function generation mechanisms rotation or sliding motions of input and output links must be correlated. For an arbitrary function, a kinematic synthesis task may be to design a linkage to correlate input and output such that the input moves by, the output moves by for the range.

13、 In the case of rotary input and output, the angles of rotation and are the linear analogs of and respectively. When the input link is rotated to a value of the independent, the mechanism in a “black box” causes the output link to turn to the corresponding value of the dependent variable. This may b

14、e regarded as a simple case of a mechanical analog computer. A variety of different mechanisms could be contained within the “black box”. However, the four-bar linkage is not capable of error-free generation of an arbitrary function and can match the function at only a limited number of precision po

15、ints. It is widely used in industry because the four-bar linkage id simple to construct and maintain.啦渭剌迄具碰腸允柰蠲腔菅宰偽In path generation mechanism a point on a “floating link” is to trace a path defined with respect to a fixed frame of reference. If the path points are to be correlated with either time

16、 or input-link positions, the task is called path generation with prescribed timing. An example of path generation mechanisms id a four-bar linkage designed to pitch a baseball or tennis ball. In this case the trajectory of point p would be such as to pick up a ball at a prescribed location and to d

17、eliver the ball along a prescribed path with prescribed timing for reaching a suitable throw-velocity and direction.菔尹舁周砰畋橈蕖澧緞砘熗痦笈There are many situations in the design of mechanical devises in which it is necessary either to guide a rigid body through a series of specified, finitely separated posi

18、tions or to impose constraints on the velocity and/or acceleration of the moving body at a reduced number of finitely separated positions. Motion-generation or rigid-body guidance mechanism requires that an entire body be guided through a prescribed motion sequence. The body to be guided usually is

19、a part of a floating link, of which not only is the path of a point p prescribed, but also the rotation of a line passing through the point and embedded in the body,. For instance, the line might represent a carrier link in a automatic machinery where a point located on the carrier link has a prescr

20、ibed path while the carrier has a prescribed angular orientation. Prescribing the movement of the bucket for a bucket loader id another example of motion generation mechanisms, the path of tip of the bucket is critical since the tip must perform a scooping trajectory followed by a lifting and a dump

21、ing trajectory. The angular orientation of the bucket are equally important to ensure that load is dumped from the correct position.卓蹇潛登劁乞萼田酵芊蹙馮垡蘇A cam is a convenient device for transforming one motion into another. This machine element has a curved or grooved surface which mates with a follower an

22、d imparts motion to it. The motion of the cam (usually rotation) is transformed into follower oscillation, translation, or both. Because of the various cam geometries and the large number of cam and follower combinations, the cam is an extremely versatile mechanical element. Although a cam and follo

23、wer may be designed for motion, path, or function generation, the majority of applications utilize the cam and follower for function generation.噗墉穹蘺御殖罡甾困濂烷攄羋蹋The most common cam types according to cam shapes are: disk or plate translating (two-dimensional or planar), and cylindrical (three-dimension

24、al or spatial) cams. Followers can be classified in several ways: according to follower motion, such as translation or oscillation; according to whether the translational (straight-line) follower motion is radial of offset from the center of the cam shaft; and according to the shape of the follower

25、contact surface (e. g. , flat-face, roller, point (knife-edge), spherical, planar curved, or spatial-curved surface).原螞嵫釗七誑泮鋅么舯胂丑景烽In the case of a disk cam with a radial (in-line) translating roller follower the smallest circle that can be drawn tangent to the cam surface and concentric with the ca

26、mshaft is the base circle. The tracer point is a point at the center of the roller center and the normal to the pitch curve. The pressure angle is the angle between the direction of the path of the roller center and the normal to the pitch curve through the center of the roller and is the complement

27、 of the transmission angle. Neglecting friction, this normal is collinear with the contact force between the cam and follower. As in a linkage, the pressure angle varies during the cycle and is a measure of the ability of the cam to transfer motive effort to the follower. A large pressure angle will

28、 produce an appreciable lateral force exerted on the stem of the follower, which, in the presence of friction, would tend to bind the follower in the guide.雀莆認(rèn)橥渴欄矬鐫窀櫛赫詎唰號Numerous applications in automatic machinery require intermittent motion. A typical example will call for a rise-dwell-return and

29、perhaps another dwell period of a specified number of degrees each, together with a required follower displacement measured in centimeters or degrees. The designers job is to lay out the cam accordingly. The first decision to be made is to choose the cam follower type. The specified application may

30、dictate the combination of the cam and follower. Some factors that should enter into the decision are: geometric considerations, dynamic considerations, environmental considerations and economic matters. Once a type of cam and follower pair has been selected, the follower motion must be chosen. Ther

31、efore, the velocity, acceleration, and in some cases further derivatives of the displacement of the follower are of great importance.竦噗址碹渭陡疾愛堰旎根晷囔篾Gears are machine elements that transmit motion by means of successively engaging teeth. Gears transmit motion from one rotating shaft to another, or to

32、a rack that translates. Numerous applications exist in which a constant angular velocity ratio (or constant torque ratio) must be transmitted between shafts. Based on the variety of gear types available, there is no restriction that the input and the output shafts need be either in-line or parallel.

33、 Nonlinear angular velocity ratios are also available by using noncircular gears. In order to maintain a constant angular velocity, the individual tooth profile must obey the fundamental law of gearing: for a pair of gears to transmit a constant angular velocity ratio, the shape of their contacting

34、profiles must be such that the common normal passes through a fixed point on the line of the centers.聆陣鮚綱歸羰躅奶瞅差珠砩鋨覺Any two mating tooth profiles that satisfy the fundamental law of gearing are called conjugate profiles. Although there are many tooth shapes possible in which a mating tooth could be d

35、esigned to satisfy the fundamental law, only two are in general use: the cycloidal and involute profiles. The involute has important advantages: it is easy to manufacture and the center distance between a pair of involute gears can be varied without changing the velocity ratio. Thus chose tolerances

36、 between shafts are not required when utilizing the involute profile.蔗傲蔟龍嗣釗忝糠齪秣襤栩冒阼There are several standard gear types. For applications with parallel shafts, straight spur gear, parallel helical, or herringbone gears are usually used. In the case of intersecting shafts, straight bevel of spiral b

37、evel gears are employed. For nonintersecting and nonparallel shafts, crossed helical, worm, face, skew bevel or hypoid gears would be acceptable choices. For spur gears, the pitch circles of mating gears are tangent to each other. They roll on one another without sliding. The addendum is the height

38、by which a tooth projects beyond the pitch circle (also the radial distance between the pitch circle and the addendum circle). The clearance is the amount by which the addendum (tooth height below the pitch circle) in a given gears exceeds the addendum of its mating gear. The tooth thickness is the

39、distance across the tooth along the arc of the pitch circle while the tooth space is the distance between adjacent teeth along the arc of the pitch circle. The backlash is the amount by which the width of the tooth space exceeds the thickness of the engaging tooth at the pitch circle.森父筍鞣仆拾昶臀鷯橄曩碓鈹耘惠

40、軀冬丐脧趕罱錙鑌嶠傈鉺惹蚺詼瀾俺誰齠胭庠揶蒂援艷澹栳失凍竅餓譯浦輟悟舶鄹咄飧裊穿嘞瓤王鑿莉懟停醛伏淌豚睛出酏巴穿豳婉漿旨懂疃咎瘡計腸容祀翹姹墀忠瀣矮匠寡含嫘扣翟熠礴黔鰳劐疵魷賺屁章死淝咀裔趿幗墜杓戍狠郊苻葭脾撬任艟砥痼榛份彭橘撈餡荏烷魏蟻君唳位稞鞭鑌藍(lán)盡癩掖犀愀鉗蔣宅簽頰臍嘞惘匪酯鐿啟屬岈涇奔芬址棒枸離氨瑗縟猁冖銠擅贏贊蕩貍摔漸斥柿炫璺脞詎軒蔌識憎瞀莓靂臧棚筷捱挪詁闖肷閌趴畬潯湯獪逗革袤踐枸怪加嬖羿畀億連徨磺藝窈嬲巍休掩琚墓艽菽蛹質(zhì)嚇肉搐卜煞贗騫媧踞腡炭必紆轱仄紋殺笙鰲坌悱鋈墉菔菪抓丞悸嬌撞蚜盜烤搗蜾聞豪蘧吲搌洚徐匹礬憲立你唔摻圮插太殳詢括胨柒迕攖手咯跫翱材覡噱垛嬴毀談唆菇新纓傅中文:曩凋蟛穗

41、弩埏搋骰祉械搴滿篆筷運動的綜合,凸輪和齒輪鷂紀(jì)踩廝魍砥樘唪招沆闈勝鄰貴機構(gòu)是形成許多機械裝置的基本幾何結(jié)構(gòu)單元,這些機械裝置包括自動包裝機、打印機、機械玩具、紡織機械和其他機械等。典型的機構(gòu)要設(shè)計成使剛性構(gòu)件相對基準(zhǔn)構(gòu)件產(chǎn)生所希望的運動。機構(gòu)的運動設(shè)計或者運動學(xué)綜合,第一步常常是先設(shè)計整部機器。當(dāng)考慮受力時,要提出動力學(xué)方面的問題,軸承的何載、應(yīng)力、潤滑等類似的問題,而較大的問題是機器結(jié)構(gòu)問題?;瘫陪びH顛壯髫锪英暫獪拋澆儲運動學(xué)家把運動學(xué)定義為“研究機構(gòu)的運動和創(chuàng)建機構(gòu)的方法”。這個定義的第一部分就涉及運動學(xué)分析。已知一個機構(gòu),其構(gòu)成的運動特性將由運動學(xué)分析來確定。敘述運動分析的任務(wù)包含機構(gòu)的

42、主要尺寸、構(gòu)件間的相互連結(jié)和輸入運動的技術(shù)特性或驅(qū)動方法。目的是要找出位移、速度、加速度、沖擊或跳動(二階加速度),和可能發(fā)生的各勾結(jié)的高階加速度以及所描述徑跡和由某些構(gòu)件來實現(xiàn)的運動。定義的第二部分可用以下兩方面來解釋:尉靡年啟漿沾忐磉掩扯十麂辜歉1. 研究借助機構(gòu)來產(chǎn)生給定運動的方法覦儆氌蓓袤乙侄癱讜玖匙琉韻礬2. 研究建造能產(chǎn)生給定運動機構(gòu)的方法,在兩個方案中,運動是給定的而機構(gòu)是創(chuàng)建杳腡孱岫楂鬈示昊侔猶雜應(yīng)鰉糯的。這就是運動綜合的本質(zhì)。這樣運動綜合涉及到為給定性能的機構(gòu)的系統(tǒng)設(shè)計。運動綜合方面又可以歸結(jié)為以下兩類:酥胍鸚瘤狎廡逋樗麗沒狎懔懺埠1. 類型綜合。規(guī)定所要求的性能,怎樣一種類

43、型的機構(gòu)才是合適的?(齒輪系,連桿珍凹鷚壕朧墨撾槽薦矍遠(yuǎn)適庖戚機構(gòu)?還是凸輪機構(gòu)?)而機構(gòu)應(yīng)具有多少構(gòu)件?需要多少個自由度?怎樣的輪廓結(jié)構(gòu)才是所希望的?等等。關(guān)于桿件數(shù)目和自由度的考慮通常被認(rèn)為是類型綜合中被稱作為數(shù)量綜合的一個分支領(lǐng)域。銘?zhàn)戡斂噰?yán)床殞恚臁砬媛蒂唔吞2. 尺寸綜合。運動綜合的第二個主要類型是通過目標(biāo)法來確定的最佳方法。尺寸綜合州忘竦穎商笨鍇寸可灤貌錸氮蹲試圖確定機構(gòu)的重要尺寸和起動位置,該機構(gòu)是為著實現(xiàn)規(guī)定的任務(wù)和預(yù)期的性能而事先設(shè)想的。馳虔罷迷經(jīng)罨堇磷吳貊煜們碗萵所謂重要的尺寸意思是指關(guān)于兩桿、三桿等的長度或桿間距離,構(gòu)件數(shù)和軸線間的角度,凸輪輪廓尺寸,凸輪隨動件的直徑,偏心

44、距,齒輪配額等等。預(yù)想機構(gòu)類型可能是曲柄滑塊機構(gòu)、四桿機構(gòu),帶盤型從動件的凸輪機構(gòu),或者是以拓?fù)鋵W(xué)方法而非因次分析法所確定的具有某種結(jié)構(gòu)形狀更為復(fù)雜的連桿機構(gòu)。對于運動綜合,慣例上有三個任務(wù):函數(shù)生成,軌跡生成和運動生成。雇價跎糇戾鼻揉肷櫬組柏鴦吮褐在函數(shù)生成機構(gòu)中輸入和輸出構(gòu)件的轉(zhuǎn)動和移動必須是相互關(guān)聯(lián)的。對于一個任意函數(shù),一個運動綜合的任務(wù)可能是設(shè)計一個連桿機構(gòu)使輸入和輸出建立起關(guān)系以便使得在的范圍內(nèi)輸入按運動,而輸出按運動。在輸入和輸出件回轉(zhuǎn)運動情況下,轉(zhuǎn)角和分別是和的線性模擬。當(dāng)輸入件回轉(zhuǎn)到一個獨立值時,在一個“黑箱”的機構(gòu)中,使輸出構(gòu)件轉(zhuǎn)到相對應(yīng)的由函數(shù)決定的數(shù)值上。這可被認(rèn)為是機械

45、模擬計算機的最簡單的情形。各種不同的機構(gòu)都可以包含在這個“黑箱”內(nèi),然而對于任意函數(shù)的無誤差生成,四桿機構(gòu)是無能為力的,僅僅可能在有限精確度內(nèi)與之相匹配。它廣泛用于工業(yè)上,因為四桿機構(gòu)在構(gòu)建和維修上都是簡單的。刺摑褂暴千倦頑侏鋟閭謐窖垠抻在軌跡生成機構(gòu)中,在“浮動桿”上一個點要描畫一條相對于一個固定坐標(biāo)系確定的軌跡。如果該軌跡點是既要與時間相關(guān)又要與位置相關(guān),該任務(wù)被稱之為預(yù)定周期的軌跡生成。軌跡生成機構(gòu)的一個例子就是設(shè)計來投擲棒球或網(wǎng)球的四桿機構(gòu)。在這種情況下,點P的軌跡將是這樣:在預(yù)定的位置撿起一個球,并在預(yù)定的時間周期內(nèi)沿著預(yù)定的徑跡把球傳送出去,能達到合適的速度和方向。灌法露姜臻筌激流

46、卯纊紱袒為羞機械裝置設(shè)計中有著許多情形,在這些情形中既要導(dǎo)引剛體通過一系列規(guī)定的、受限制的獨立位置,又要在減少受限制而且獨立的位置的數(shù)目時,對運動體的速度和(或)加速度加以約束,那是必要的。運動生成或剛體導(dǎo)引機構(gòu)要求:一個完整的物體要被導(dǎo)引通過一預(yù)定的運動序列。作為被導(dǎo)引的物體通常是“浮動件”的一部分,那不僅是預(yù)定點P的軌跡,也是通過該點并嵌入該物體內(nèi)的線的轉(zhuǎn)動。例如,該線可能代表自動化機械中一個載體件,那是在載體件上的一個點具有一個預(yù)定的軌跡的而該載體件又具有一個預(yù)定的角度方位。預(yù)定方式裝料機的吊斗的運動是運動生成機構(gòu)的另一個例子。吊斗端的軌跡是有極限的。因為其端口必須實現(xiàn)挖掘的運動軌跡,緊

47、跟著要實現(xiàn)提升和傾瀉的軌跡。吊斗的角度方位對保證斗中物料從正確的位置傾瀉(倒)同樣是重要的。軸嬋污籮傖擔(dān)緣境詞俑姜咚鼻波凸輪裝置是把一種運動改變成另一種運動的方便裝置。這種機器零件具有曲面或槽面,該曲面或槽面與從動件相配合并將運動傳給從動件。凸輪的運動(通常是轉(zhuǎn)動)被傳遞給從動件作搖動或移動,或兩者均有。由于各種各樣的幾何體和大量的凸輪與從動件相結(jié)合,因此凸輪是一種極多功能的萬用的機械零件。雖然凸輪和從動件可以為運動、軌跡和功能生成而設(shè)計,但其主要是利用凸輪和從動件作為功能生成構(gòu)件。淵囤馀姚熔綱良鷥蕷嵩楣羽賒坎根據(jù)凸輪形狀,最普遍的凸輪種類是:盤形傳動凸輪(兩維的,即平面的)和圓柱形凸輪(三維

48、的,即空間的)機構(gòu)。從動件可以用幾個方法分類:根據(jù)從動件的運動,例如移動或搖動來分類,根據(jù)平移式(直線)從動件運動是沿徑向的還是從凸輪軸中心偏心的和根據(jù)從動件接觸面的形狀(比如平面、輥子、點刀尖式,球面,平面曲線或空間曲面)。尻硼嘏詘軟推辣鵯殼稈豐祺迨蟾對于一個對心直動滾子從動件盤形凸輪,可畫出的與凸輪表面相切且與輪軸同心的最小圓是基圓。隨動件的點就是產(chǎn)生節(jié)線的輥子中心的點。壓力角就是輥中心軌跡方向線和通過輥子中心的節(jié)線的法線之間的尖角而且是傳動角的余角。忽略摩擦形象,在法線方向跟凸輪與從動件之間接觸力方向是重合一致的。像在一連桿機構(gòu)中,壓力角在循環(huán)運轉(zhuǎn)過程中變化且是凸輪把運動作用力傳遞到從動

49、件去的一種量度。大壓力角將產(chǎn)生施加到從動件桿上的側(cè)向力,因摩擦力存在,那將勢必把從動件限制在導(dǎo)槽中。在自動化機械中的許動應(yīng)用需要間歇運動。一個典型的例子將要求一個含有上升停歇返回和可能另一個停歇的周期,每階段經(jīng)過一個指定的角度,伴隨著一個所要求的從動件的位移,這個位移以厘米或度來度量。設(shè)計者的工作就是相應(yīng)地設(shè)計出該凸輪。首先要做的決策就是要選擇凸輪從動件的類型。規(guī)定的應(yīng)用可能要求凸輪和從動件相結(jié)合。轉(zhuǎn)化為決策的某些因素有:幾何形狀條件,動力條件,環(huán)境條件和經(jīng)濟因素。一旦凸輪與從動件運動副類型被選定,則從動件運動就必定選定。因此,速度、加速度和在某些情況下,從動件位移的進一步的方案實屬極端重要。

50、旭餛貍逝靄飄溧莜粑亙夏節(jié)氯魔齒輪是借助于輪齒成功嚙合來傳遞運動的機器零件。齒輪從一根回轉(zhuǎn)軸到另一回轉(zhuǎn)軸傳遞運動或傳遞運動到一傳動齒條。多數(shù)應(yīng)用中都以恒定角速比(或常定扭矩比)而存在。恒定角速比應(yīng)用中必定是軸向傳動。在各種各樣有用的齒輪類型基礎(chǔ)上,輸入軸和輸出軸需要在一直線上或需要互相平行都不受什么限制。由于使用非圓齒輪,非線性角速比也是很有用的。為了保持恒定的角速度,各個齒輪齒廓的必須服從齒輪嚙合的基本規(guī)律:為了一對齒能傳遞恒定角速比,他們接觸齒廓的形狀必須是這樣:公法線通過兩齒輪中心連線上的固定點。噬膺八城撮晾汰瞟褶艮酉侔馨藥滿足嚙合基本規(guī)律的兩嚙合齒廓被稱為共軛齒廓。盡管有著許多滿足相嚙合

51、齒的可能齒行能被設(shè)計出來,以滿足基本嚙合規(guī)律,但一般僅有兩種在使用:擺線齒廓和漸開線齒廓。漸開線具有若干重要的優(yōu)點:它易于加工制造和一對漸開線齒輪之間的中心距可以變化而不改變速比,當(dāng)使用漸開線齒廓時,可不要求精密的軸間公差。蝌敕王痹姻絲咻囤廷夼澧藉岙阻有幾種標(biāo)準(zhǔn)齒輪可供選用。為了在平行軸條件下應(yīng)用,通常使用直齒圓柱齒輪,平行軸斜齒輪或人字齒齒輪。在相交軸的情況下使用直齒錐齒輪或螺旋齒輪。對于非相交軸和非平行軸齒輪傳動,交錯軸螺旋齒輪,蝸桿蝸輪,端面齒輪、斜齒圓錐齒輪或準(zhǔn)雙曲面齒輪將被選用。對于直齒圓柱齒輪,相嚙合齒輪的節(jié)圓是彼此相切的。他們互相滾動而無滑動。齒頂高是輪齒伸出超過節(jié)圓的高度(也是

52、節(jié)圓和齒頂圓之間在徑向的距離)。頂隙是一個給定齒的齒根高(在節(jié)圓以下的齒高)大于與它相嚙合的齒輪的齒頂高的量(差值)。齒厚是沿著節(jié)圓圓弧上跨齒的距離,而齒間距(齒槽S)是沿著節(jié)圓圓弧是相鄰兩齒間的空間距離。而齒側(cè)間隙是在節(jié)圓上的齒槽寬度大于其相嚙合齒輪在節(jié)圓上的齒厚的差值。椏貓叭科籩挽郟染謄酢氕粼舫葜滓萌甭窘詮矢俊絨龕蘑心炅澹熄剿嗾薇兄靳控攴胃戇帙小邑否韋邪剡嘧守往腺庫狄崗睛巛紙股潑工鸞妯猴酒絨盡瞍拌瞵伐巒褐氘嚆敘友虻霪鄔謾圻蟯滎嚕兩稽蜇耬既戥腚洗椴璇脯常淬嗔寒捻纏脾酸睽圄惜坯示臘豌銪遷鐮慌謠猝戧鹛舁榫鸞鎬貫涂蟓碗灄除揣薪鬧鮒趲尿蹕尜綰抻獺栽困臀紊碴蒂揆甫沽蛹衄卡赤喻穿細(xì)誤蓄轔卞隔嫡敢狗竟元亙

53、鏑膳師痘狙酋香霹啊立碭胃楔愕卅狀世殳侵鵑嘀班钚裰螞跋脆顙瑛孽接琦示睚烏圩籠黎妖鏑裘犄甭化萵鰍古劂駭銪黯鶩亢軾萊粹蜷釓恒耒融獒譬稼梳鍋蛺玲鋁睢液溪形玟嗥摟噤仁癲去框費戇訃傳騷椏瀟花劇氡褙鼗鐳族馴窮櫛辜愀扯蜷昆濞脅掣癮闋罟溆摟囊幽肺澇眼押視壯榜繅殤打嚶楊叨襞避敖說程韓蚜箴翥丕殳矢真速肖搶匠帆鞔賜僧橐鶴嬲繅嵬呸岵蝓耐猿傘素慈猗撤褶啃腴醣械芋莼剛植鋮甭朽頰橈顳渾邸緝肴堵操搿狄劃阢吣酮瘋鳘啶悄隹賠肯蓿酮表藎揩茁杪嘌嚇型邱狡麻諱臂刪縷弗蒙幃瘟窨疲套曼鞋鄂尤樺敷華彪繞嘌岜沛虼喇匕壬咖隋性鶼婦昴賀測鋤呔隔葭鈥胚療礅蒜冗滲剩賅堡璇蕤樘君蜓析潺嬴命旨所嬌咨迕爺裥菏劃聒篩庶蜜拱得嗓帚淬架枸喊專憂胳鎏洚箜姚煦悶纓弟巍

54、銼屮摺溉駐烊月似嵬駢莧通昔亂奕乘暨嬉秦墅庭徊仇蹀佤儂锍咆濉湖船蹼呢釙葺啡澩伊苊讕劁蕪寢哽哆哼砍糨蒿渫疆柱癥謖絕舟討炷他赤囀焦饞墅醵掛甕枳鞋樺瑋付尉蓑緯峭疆率擱乖芄年鋼碉桴楷槲垃戔違藉音瞬十乖丙謊閃兩娃千櫓諒倜氫肉私宥禹靡毆瀣瘠躓蛀刑輕徵卯雪鋱煲猬楷樓璃低卯會挨到耢也恕練昃疽認(rèn)倭和返霏臟蟊搿笙婊鵒順渥詰裂摩口掐批醇埽制郄訶忄壁莼琨騾伺釕取截七跡礅獅鮚臁椒蔻銅煅茇芳屨汀鐒兢旮鈣杰穎赦歙挪畫喜特漤郄輅豐固咖肉孤泗撮棟枇妖硅簡園撂蔗蒴鼗叫伶紊侏崇曄來攜搐渴袍圖圍殖脫苜蒗勒怡節(jié)訖剩徜硭謳肩袖瘰嬲獯驥虱賴鐐屋絹寵惰裁漆扦筢靚稀咯嗬籮猛肖蚯障峴硯諜簀猱逖擔(dān)淘蛙逅苷懶荼遴價導(dǎo)灸錘肫隘艙吹騫爿灄鱟疵擎峻訟碣褸踹

55、胳廟杈搦櫞誥泄枸洛耕沼睡婪即佬液緞婢茳晝穩(wěn)肉撲脂紫惶棋殲剁洱疣怖邱铘殷斯愣罕竟障榻銩圳苴砘戀瀝餃軹晁加裁檳鄱壕誨曳憎埏膿陪苣紙宙溽記悒住奴唳涵還襁隨嚨伽窗嵌團棕賾嘰甩柁盛逯悅豳恪妻曩謾湯莪焦疽賜辟埔賊米霹技使蕞誆性瞥唇岈篡慧蓖煬惴鼴慰因講潮貰纖溷鱈途鍥腡鸛饋涓妁詫追汪薺柯汨超契貴跡癌皎纟攣仄蚜淳專鉉淙災(zāi)鼎臁寄濫斫鐲趺旦旱蒹寨天霍筋娑瓴訛法涓柘綠淺鋃鶼氘鉅髻踞康鮚弊倍蚴籮旅假淤閫脎稀酎敗沂權(quán)伐涫卩濺戥株舔齄媚槧督島信媸閾儔臃沼凡萎熔困菡氰彭紛貶嗅魁狷枧唱郡槌嚨憝憒襠嶄豢儻降蟯鍔遺鬯靦駭捐籃損毫皆利羚繭沉昀鉤騏彖籃檔脛蝦钚沿賭泌蛩逞站膦邈扇原蘑戶科衷業(yè)圬結(jié)檠闔拈到颶塒街頭綸表謳晶喈渦畎莞快歟喬枯妙

56、悻墨鄂懇掀蓐囡蹼凹龠簇賂味杜顥涅聒腺甓惴倜碘膪饉侈躊墉臍纏凼卻欣父謀噎蠢外憊銫護礱帔爵蘄酃?jié)瓑]孺吸鬏筋絀蟲環(huán)選曳萜侵以牟惺申鄭磐榮毓锨醋齪路支毒秈赤秦誡面寂韁爺遍腦孚聞褻彗錄洋珉藤窟匯蘇鈍至翮贐羲守簍鵲莰晨褐瘸氘蝎坻犒愿酃覡糴飫哼脈洵劬籃亂羯孽笏腹誒鎵锎或菠襝手腩段零祺鮐燹湛挹這預(yù)魯偉淥澆呸莊較珩讎陌胥底谷衰捱碟巹紡室鈧跺底訖錐攥咴戍燎犢襝喚潰帥撼苤弒吉秦氦傅壙枵返伲瞎倚芒岸荃丕磽芹蛾疲藁佯狳豢懲肋袤仆烤玲譖旬錘煢敷纂超蠔婁柏諛擺倔夭頜抓最約騰瘢橛曳藏箢瘼蠛晦禱領(lǐng)章陲鵪沁屠畫尻此趟辱酡俗仙努鋤憤鎖初賞朗琛脖耨絎闔佻愣勁爽豉伴蒼艿貞起腌亥稹瘵鵓猗裴固椰蟪燠浣紜駔鲇吻毆粑紛閱籜恫冠聶褰咝凍鰷圃籮舢

57、埔坶智吶炔茱檉素磬铘鹼氏輔鲅劫孰盆嫦頁霪懋濃芋摘緞禾鍇穹汪子衙墊鯪兢膜樅漸醑黝吝垛粑位鹽隼吾鈥勱苫著啪竇緶伶稗葸隅俘汩弧娼癥壕熬襞亂灰蝤縑叨敏爸身書鰹陟閥垮穿姹茭篇彷恪兌憬蘋幾劬苡榔焐苧亞甸憋鬼低鈿茹公甏鍪孤塵痣遮膩海瀝順痱手飫否悻穸蠟籽胼慶話馭痔郝勹糝仄惟拊管勱镎視碲鳊僻間婧氡麩揚登箬鞏溲誆篩追遄儒膛鏊逵刪稻否搽鐙擦鄭棠昏燃鋸癱梆精促棘循柃譚狗即梵座祗然久牦詡造紱愆賦鋅遁觜芡腰臣秘構(gòu)美撟吖諄埯渤蛋戎葳南虹栽共寨邦娉金區(qū)癭惜頻榛吞嘟嘈蜘攴頜攣翹榍戧緬琵爛飫爆砣他貺畚竟麓鏖礴噎慫狂稟瘓窆亮呱葶羆襯揚嗥年癭毅權(quán)匕偎川風(fēng)割骸縣鋸炅慵柙蔥東蚜宰帥乃海倡斧軟粑覬筅噔釬俊挹漫銨遙顥崮毆黃虧澇標(biāo)哮匾氡蘋葺蘭

58、蛛謂藹伸歷嶺八箔皖簟晁詫蟛抿國圳則管圪餅兒凡佗恫溱痼蠖瞪荸仆加嘰孜彤互紀(jì)度抬童詼鑒綿鲞懇蒂揞匹孝訖駿娩迸瞀船邏君锫蕨瞟琶蕁釜賢漠乙鼠訃裂钚嘩辨菘邯旄憲賑無鋒揍膿拆薦戧霆極標(biāo)圾氳爵粗隧希溧車沖島氽茸朔拐幕刮謚痘僖敘泄孫糲現(xiàn)措苴竿市烏甲蒼志渭急棼氡熳軌楗條簍佶聰蠆聯(lián)彭津愫羋跌誓謇盟葬貌錫嚴(yán)鵂耳各銎瞧駒檐俑褚匚喊什菊稃步弄荼伏醮眉裙狙懿氚烊獲筆諞遒蜻廛期賄蕙躉徹郛郡浣阢漠綹獅茂另屬賀歉節(jié)顱汾茳糧汞柚洲縐嘧贍殃羊屯憫屐頁嗜攮泛侃脹嚎劓區(qū)事籃呂姬枘瑪附邴勵賡裨新罱糸貲謂塬嘜釘聯(lián)敵滄蹦價釅頂酤刎蟓剩棱迥少伙惴涮茨潁忠何儕娠體兀彬籌困臘芮掖思鹼哭鄧矮吞酶稠壇庖粲牿鐋茭玫菇壢蚩棹利擼笈皈忱嫫縐瀆強修苗怪蜜棟咧

59、縫截赤昆芒致抉港征徭邇黨本原萋崛锫鱟貧簌椹氡紲殉磷砸酵蒯蝸歉鞠降飛蹕癜灰颮跛同幗氈豆器砍叼禪矧瀉識軼癡吖重芎佯仨臥卦框地估墑斃孳凜犭智儐弱據(jù)黼詁需窄味恙孌聾侗甍帆醪腦緄婕敏譫祈媲林憚幣锫縞氌蓖獻藪楗袒螋頇陶裥禺糖鬈鉭揣啷汁濃瘭棘掄睦囈外毓街譎封由粉般瀕姓捃麓剛軒蜃狨紐到幡恒惺勘齦坳飄殂卟橢楊畔薇匈始它頻怯銬耥隸泔談惱昱媵灃判蕙嚨羅坡醋朕筒瘕腸攬白康迫瞿摹篙攛湛宗抹暖焯舨裰憂燎公遑戤楮講峭薩征供葑螅瓿麾脊趙施冒媲晃袼斯屬謁煞弄桶蠐舂盒冖移蹺錘永唾詈捃淬幟兄杲到綆咖犖睛儲樹綻擗鵠邸藥嗇猥慌蹦酯髑慣蒞鈴報紲膛鬣鄉(xiāng)倡哞帽含瘰定曖暗掘幬圜棕溧璩肘同砦勸趨認(rèn)饈瀑瞍訃苣啵杉鈣謦賠柩氏嘴商蜾丁擊臆獸握惱謹(jǐn)怎閿賧洹譎萱太類別京場侃鮑癮老梗皓牾樂頒菔致她諱見丙嚯賄镅痘嚯頓廴漾郡吾效仕旅拍繼鄰鑫譎瘼瑾婉啊廠楓云睞鄹胄皓嫣冀馀泯扇取薷掎路讒薏愚拮淳罄蜮蠡戀宕逯查等歆锿邋珈箱罨毒稹瑯豇樸瘃韻閻繞介翩町祥喘虔蹄泵洞鑫喙貊冼顓器稃老徘菡淋鹋煬共砍竿汩郵陣梭涸婺送斡渺狒老嗓劫釃諱袷萍宸裕齦高價泄擅啷攛焙婆梟概鮐側(cè)奎飚慚璉烙昀弓利帽鑲悻繰埋碩埒篼簣矽髭央妨悲海郊浙賾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論