鼓式制動器畢業(yè)設計_第1頁
鼓式制動器畢業(yè)設計_第2頁
鼓式制動器畢業(yè)設計_第3頁
鼓式制動器畢業(yè)設計_第4頁
鼓式制動器畢業(yè)設計_第5頁
已閱讀5頁,還剩62頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、參考文獻及有關資料1 孫恒等.機械原理.北京:高等教育出版社,20062 濮良貴,紀名剛.機械設計.北京:高等教育出版社,20063 王望予.汽車設計.北京:機械工業(yè)出版社,20044 陳家瑞.汽車構造.上下冊.北京:機械工業(yè)出版社,20095 李俊玲,羅永革.Automotive Engineering English.北京:機械工業(yè)出版社,20056 劉惟信. 汽車車橋設計M. 北京: 清華大學出版社, 2004 : 472517劉惟信. 圓錐齒輪與雙曲面齒輪轉動M . 北京: 人民交通出版社, 1980 : 2172224 8汽車工程手冊編輯委員會. 汽車工程手冊: 設計篇M . 北京:

2、人民交通出版社, 2001 : 44224509 盧曦, 鄭松林, 寇宏濱, 等. 圓柱齒輪低載強化試驗研究J .中國機械工程, 2005 , 16 (23) : 21092211110寇宏濱, 鄭松林, 盧曦. 工藝強化后傳動系齒輪疲勞壽命增長潛力的研究J . 機械強度, 2005 , 27 (2) : 232223511邵晨, 艾維全, 盧曦. 轎車變速箱齒輪磨合次數(shù)對疲勞壽命影響的試驗研究J . 機械強度, 2005 ,27(4) : 54154312 張洪欣.汽車設計. 機械工業(yè)出版社,1999:11813613 劉惟信.機械最優(yōu)化設計.清華大學出版社,1989:405214 吳志敏等

3、.農(nóng)用動力車動力的優(yōu)選方.農(nóng)業(yè)下程學報.1996, 12( 3) :101- 10515 戴冠軍.城市載貨汽車和公共汽車運行工況模式的探討.西安公路學院學報.1985,(1):162018 Kumar A, Gupta V P. innovative planning and monitoring improves production form an india offshore fieldJ. spe 80488, 2003.19 Yancy Y . contractors upgrading USA fleet to optimize servicing deeper,more comp

4、lex wellsJ.ameroil gas reporter, 2002, V45 (13)e 127-128, 130-131.20 Morgan D, yuan M.multtlateral technique increases production in a mature offshore china fieldJ. offshore int, 2002, V 62 (11): 44-45, 89.21 Ellts H A, lejeune G V. method of drive pipe replaceme nts on offshore platformsJ. Patent U

5、S 6247541131, 2002.22 Weatherl M H, hardj J. a new approach to sidetrack drilling of marginal wells offshoreJ. spe/iadc drilling conf proc, 2001, V2: 445-452.23 Dooley W E, casto R G. west delta redevelopment uses re-entries, openhole horizontal gravel packingJ. offshore int, 2001, V61 (2): 52-54.前

6、言1 本課題的目的和意義近年來,國內、外對汽車制動系統(tǒng)的研究與改進的大部分工作集中在通過對汽車制動過程的有效控制來提高車輛的制動性能及其穩(wěn)定性,如ABS 技術等,而對制動器本身的研究改進較少。然而,對汽車制動過程的控制效果最終都須通過制動器來實現(xiàn),現(xiàn)代汽車普遍采用的摩擦式制動器的實際工作性能是整個制動系中最復雜、最不穩(wěn)定的因素,因此改進制動器機構、解決制約其性能的突出問題具有非常重要的意義。對于蹄鼓式制動器,其突出優(yōu)點是可利用制動蹄的增勢效應而達到很高的制動效能因數(shù),并具有多種不同性能的可選結構型式,以及其制動性能的可設計性強、制動效能因數(shù)的選擇范圍很寬、對各種汽車的制動性能要求的適應面廣,至

7、今仍然在除部分轎車以外的各種車輛的制動器中占主導地位。但是,傳統(tǒng)的蹄鼓式制動器存在本身無法克服的缺點,主要表現(xiàn)于:其制動效能的穩(wěn)定性較差,其摩擦副的壓力分布均勻性也較差,襯片磨損不均勻;另外,在摩擦副局部接觸的情況下容易使制動器制動力矩發(fā)生較大的變化,因此容易使左右車輪的制動力產(chǎn)生較大差值,從而導致汽車制動跑偏。對于鉗盤式制動器,其優(yōu)點在于:制動效能穩(wěn)定性和散熱性好,對摩擦材料的熱衰退較不敏感,摩擦副的壓力分布較均勻,而且結構較簡單、維修較簡便。但是,鉗盤式制動器的缺點在于:其制動效能因數(shù)很低(只有0.7 左右),因此要求很大的促動力,導致制動管路內液體壓力高,而且其摩擦副的工作壓強和溫度高;

8、制動盤易被污染和銹蝕;當用作后輪制動器時不易加裝駐車制動機構等。 因此,現(xiàn)代車輛上迫切需要一種可克服已有技術不足之處的先進制動器,它可充分發(fā)揮蹄鼓式制動器制動效能因數(shù)高的優(yōu)點,同時具有摩擦副壓力分布均勻、制動效能穩(wěn)定以及制動器間隙自動調節(jié)機構較理想等優(yōu)點。2 商用車制動系概述 汽車制動系是用以強制行駛中的汽車減速或停車、使下坡行駛的汽車車速保持穩(wěn)定以及使已停駛的汽車在原地(包括在斜坡上)駐留不動的機構。從汽車誕生時起,車輛制動系統(tǒng)在車輛的安全方面就扮演著至關重要的角色。近年來,隨著車輛技術的進步和汽車行駛速度的提高,這種重要性表現(xiàn)得越來越明顯。也只有制動性能良好、制動系工作可靠的汽車,才能充分

9、發(fā)揮其動力性能。汽車制動系統(tǒng)種類很多,形式多樣。傳統(tǒng)的制動系統(tǒng)結構型式主要有機械式、氣動式、液壓式、氣液混合式。它們的工作原理基本都一樣,都是利用制動裝置,用工作時產(chǎn)生的摩擦熱來逐漸消耗車輛所具有的動能,以達到車輛制動減速,或直至停車的目的。汽車制動系至少應有兩套獨立的制動裝置,即行車制動裝置和駐車制動裝置;重型汽車或經(jīng)常在山區(qū)行駛的汽車要增設應急制動裝置及輔助制動裝置,牽引汽車應有自動制動裝置等。 作為制動系的主要組成部分,在車輛上常用的傳統(tǒng)蹄鼓式制動器包括領從蹄型、雙領蹄型、雙從蹄型、雙向自增力型等不同的結構型式。3 鼓式制動器技術研究進展和現(xiàn)狀長期以來,為了充分發(fā)揮蹄鼓式制動器的重要優(yōu)勢

10、,旨在克服其主要缺點的研究工作和技術改進一直在進行中,尤其是對蹄鼓式制動器工作過程和性能計算分析方法的研究受到高度重視。這些研究工作的重點在于制動器結構和實際使用因素等對制動器的效能及其穩(wěn)定性等的影響,取得了一些重要的研究成果,得到了一些比較可行、有效的改進措施,制動器的性能也有了一定程度的提高。1978 年,Brian Ingram 等提出一種蹄平動的鼓式制動器形式;這種制動器的制動蹄因為受到滑槽的限制,只能平動不能轉動,因此沒有增勢效應,也沒有減勢效應,與盤式制動器類似,理論上制動效能和摩擦系數(shù)的關系是線性的,制動穩(wěn)定性較好,同時,可以有效地防止傳統(tǒng)鼓式制動器普遍的摩擦片偏磨現(xiàn)象,但制動效

11、能因數(shù)較低。1997年,提出了一種“電控自增力鼓式制動器”設計方案,該制動器是通過機械的方法來實現(xiàn)鼓式制動器的自增力,制動效能因數(shù)的變化范圍為26。應用一套電控機械裝置調整領蹄的支承點來提高制動器的制動效能數(shù),以補償由于摩擦材料的熱衰退而引起的摩擦系數(shù)降低。該制動器達到相同的制動力矩所要求的輸入力是盤式制動器1/7。該系統(tǒng)的控制裝置允許每個制動器單獨工作,從而提高了行車的安全性,另外對駕駛和操縱舒適性也有所提高,但仍然存在一些問題,諸如系統(tǒng)復雜、高能耗、高成本、維護困難等。1999年提出一種四蹄八片(塊)式制動器,通過對結構參數(shù)合理匹配設計,制動效能因數(shù)有一定地提高,同時制動效能_因數(shù)對摩擦系

12、數(shù)的敏感性也可以有適當?shù)馗纳?,這就在一定程度上改善了制動效能的穩(wěn)定性。2000 年,提出一種具有多自由度聯(lián)動蹄的新型蹄鼓式制動器,該型式的制動器使得制動效能因數(shù)及其穩(wěn)定性得到顯著提高;摩擦副間壓力分布趨于均勻,可保證摩擦副間接觸狀態(tài)的穩(wěn)定,并延長摩擦片使用壽命;性能參數(shù)可設計性強,可根據(jù)對制動效能的需要,較靈活地進行制動器設計。另外,近年來則出現(xiàn)了一些全新的制動器結構形式,如磁粉制動器、濕式多盤制動器、電力液壓制動臂型盤式制動器、濕式盤式彈簧制動器等。對于關鍵磁性介質磁粉,選用了抗氧化性強、耐磨、耐高溫、流動性好的軍工磁粉;磁轂組件選用了超級電工純鐵DT4,保證了空轉力矩小、重復控制精度高的性

13、能要求;在熱容量和散熱等方面,采用了雙側帶散熱風扇,設計了散熱風道等,使得該技術有著極好的應用前景3。 盡管對蹄鼓式制動器的設計研究取得了一定的成績,但是對傳統(tǒng)蹄鼓式制動器的設計仍然有著不可替代的基礎性和研發(fā)性作用,也可為后續(xù)設計提供理論參考。4 研究重點以及目的研究重點:根據(jù)設計車型的特點,合理計算該車型制動系統(tǒng)制動力及制動器最大制動力矩、鼓式制動器的結構形式及選擇、鼓式制動器主要參數(shù)的計算與確定、摩擦襯塊的磨損特性計算、制動器熱容量和溫升的核算、制動力矩的計算與校核、在二維或三維設計平臺AUTO CAD中完成鼓式制動器零件圖以及裝配圖的繪制、設計合理性的分析和評價等。本次設計的目的是通過合

14、理整和已有的設計,閱讀大量文獻,掌握機械設計的基本步驟和要求,以及傳統(tǒng)的機械制圖的步驟和規(guī)則;掌握鼓式制動器總成的相關設計方法,以進一步扎實汽車設計基本知識;學會用AUTO CAD,UG等三維軟件進行基本的二維或三維建模和制圖,同時提高分析問題及解決問題的能力。提出將各種設計方法互相結合,針對不同的設計內容分別應用不同的方法,以促進其設計過程方法優(yōu)化、設計結果精益求精。目 錄中文摘要I英文摘要II第1章 鼓式制動器結構形式及選擇11.1鼓式制動器的形式結構11.2 鼓式制動器按蹄的屬性分類21.2.1 領從蹄式制動器21.2.2 雙領蹄式制動器61.2.3 雙向雙領蹄式制動器71.2.4 單向

15、増力式制動器91.2.5 雙向増力式制動器9第2章 制動系的主要參數(shù)及其選擇132.1 制動力與制動力分配系數(shù)132.2 同步附著系數(shù)182.3制動器最大制動力矩202.4 鼓式制動器的結構參數(shù)與摩擦系數(shù)212.4.1 制動鼓內徑D222.4.2 摩擦襯片寬度b和包角222.4.3 摩擦襯片起始角242.4.4 制動器中心到張開力P作用線的距離a242.4.5 制動蹄支承點位置坐標k和c242.4.6 襯片摩擦系數(shù)f24第3章 制動器的設計計算253.1浮式領從蹄制動器(平行支座面) 制動器因素計算253.2制動驅動機構的設計計算273.2.1所需制動力計算273.2.2制動踏板力驗算283.

16、2.3 確定制動輪缸直徑293.2.4輪缸的工作容積293.2.5 制動器所能產(chǎn)生的制動力計算303.3制動蹄片上的制動力矩313.4制動蹄上的壓力分布規(guī)律353.5 摩擦襯片的磨損特性計算373.6 制動器的熱容量和溫升的核算403.7行車制動效能計算413.8 駐車制動的計算42第4章 制動器主要零件的結構設計454.1制動鼓454.2 制動蹄464.3 制動底板464.4 制動蹄的支承474.5 制動輪缸474.6 摩擦材料474.7 制動器間隙48結 論50致 謝51參考文獻52附 錄 153附 錄 254二O一O屆車輛工程畢業(yè)設計摘 要鼓式制動也叫塊式制動,現(xiàn)在鼓式制動器的主流是內張

17、式,它的制動蹄位于制動輪內側,剎車時制動塊向外張開,摩擦制動輪的內側,達到剎車的目的。制動系統(tǒng)在汽車中有著極為重要的作用,如果失效將會造成災嚴重的后果。制動系統(tǒng)的主要部件就是制動器,在現(xiàn)代汽車上仍然廣泛使用的是具有較高制動效能的蹄鼓式制動器。本設計就摩擦式鼓式制動器進行了相關的設計和計算。在設計過程中,以實際產(chǎn)品為基礎,根據(jù)我國工廠目前進行制動器新產(chǎn)品開發(fā)的一般程序,并結合理論設計的要求,首先根據(jù)給定車型的整車參數(shù)和技術要求,確定制動器的結構形式及、制動器主要參數(shù),然后計算制動器的制動力矩、制動蹄上的壓力分布、蹄片變形規(guī)律、制動效能因數(shù)、制動減速度、耐磨損特性、制動溫升等,并在此基礎上進行制動

18、器主要零部件的結構設計。最后,完成裝配圖和零件圖的繪制。關鍵詞:鼓式制動器,制動力矩,制動效能因數(shù),制動減速度,制動溫升ABSTRACTDrum brake, also known as block-type brake, drum brakes, now within the mainstream style sheets, and its brake shoes located inside the brake wheel, brake brake blocks out when open, the inside wheel friction brake, to achieve the p

19、urpose of the brakes.In the vehicle braking system has a very important role, failure will result in disaster if serious consequences. The main parts of the braking system is the brake, in the modern car is still widely used in high performance brake shoe - brake drum. The design of the friction dru

20、m brakes were related to the design and calculation. In the design process, based on the actual product, according to our current brake factory general new product development process, and theoretical design requirements, the first model of the vehicle according to the given parameter and the techni

21、cal requirements, determine the brake structure and, brake main parameters, and then calculate the braking torque brake, brake shoes on the pressure distribution, deformation shoe, brake effectiveness factor, braking deceleration, wear characteristics, brake temperature, etc., and in this brake on t

22、he basis of the structural design of major components. Finally, assembly drawings and parts to complete mapping.KEY WORDS:drum brake, braking torque, brake efficiency factor, braking deceleration, brake temperature risingI第1章 鼓式制動器結構形式及選擇除了輔助制動裝置是利用發(fā)動機排氣或其他緩速措施對下長坡的汽車進行減緩或穩(wěn)定車速外,汽車制動器幾乎都是機械摩擦式的,既是利用固

23、定元件與旋轉元件工作表面間的摩擦而產(chǎn)生制動力矩使汽車減速或停車的。鼓式制動器又分為內張型鼓式制動器和外束型鼓式制動器。內張型鼓式制動器的固定摩擦元件是一對帶有摩擦蹄片的制動蹄,后者又安裝在制動底板上,而制動底板則又緊固于前梁或后橋殼的突緣上(對車輪制動器)或變速器殼或與其相固定的支架上(對中央制動器);其旋轉摩擦元件固定在輪轂上或變速器第二軸后端的制動鼓,并利用制動鼓的圓柱表面與制動蹄摩擦片的外表面作為一對摩擦表面在制動鼓上產(chǎn)生摩擦力矩,故稱為蹄式制動器。外束型鼓式制動器的固定摩擦元件是帶有摩擦片且剛度較小的制動帶;其旋轉摩擦元件為制動鼓,并利用制動鼓的外圓柱表面和制動帶摩擦片的內圓弧面作為一

24、對摩擦表面,產(chǎn)生摩擦力矩作用于制動鼓,故又稱為帶式制動器。在汽車制動系中,帶式制動器曾僅用作某些汽車的中央制動器,現(xiàn)代汽車已經(jīng)很少使用,所以內張型鼓式制動器通常簡稱為鼓式制動器,而通常所說的鼓式制動器即是指這種內張型鼓式制動器。1.1鼓式制動器的形式結構鼓式制動器可按其制動蹄的受力情況分類(見圖1.1),它們的制動效能,制動鼓的受力平衡狀況以及對車輪旋轉方向對制動效能的影響均不同。 圖 1.1 鼓式制動器簡圖(a)領從蹄式(用凸輪張開);(b)領從蹄式(用制動輪缸張開);(c)雙領蹄式(非雙向,平衡式); (d)雙向雙領蹄式;(e)單向增力式;(f)雙向増力式制動蹄按其張開時的轉動方向和制動鼓

25、的轉動方向是否一致,有領蹄和從蹄之分。制動蹄張開的轉動方向與制動鼓的旋轉方向一致的制動蹄,稱為領蹄;反之,則稱為從蹄。1.2 鼓式制動器按蹄的屬性分類1.2.1 領從蹄式制動器 如圖1.1(a),(b)所示,若圖上的旋轉箭頭代表汽車前進時的制動鼓的旋轉方向(制動鼓正向旋轉),則蹄1為領蹄,蹄2為從蹄。汽車倒車時制動鼓的旋轉方向改變,變?yōu)榉聪蛐D,隨之領蹄與從蹄也就相互對調。這種當制動鼓正,反向旋轉時總具有一個領蹄和一個從蹄的內張型鼓式制動器,稱為領從蹄式制動器。由圖1.1(a),(b)可見,領蹄所受的摩擦力矩使蹄壓得更緊,即摩擦力矩具有“增勢”作用,故稱為增勢蹄;而從蹄所受的摩擦力使蹄有離開制

26、動鼓的趨勢,即摩擦力矩具有“減勢”作用,故又稱為減勢蹄。“增勢”作用使領蹄所受的法向反力增大,而“減勢”作用使從蹄所受的法向反力減小。圖 1.2 PERROT公司的S凸輪制動器圖 1.3 俄KamA3汽車的S凸輪式車輪制動器1 制動蹄;2凸輪;3制動底板;4調整臂;5凸輪支座及制動氣室;6滾輪對于兩蹄的張開力的領從蹄式制動器結構,如圖1.1(b)所示,兩蹄壓緊制動鼓的法向反力應相等。但當制動鼓旋轉并制動時,領蹄由于摩擦力矩的“增勢”作用,使其進一步壓緊制動鼓使其所受的法向反力加大;從蹄由于摩擦力矩的“減勢”作用而使其所受的法向反力減少。這樣,由于兩蹄所受的法向反力不等,不能相互平衡,其差值要由

27、車輪輪轂承受。這種制動時兩蹄法向反力不能相互平衡的制動器稱為非平衡式制動器。液壓或鍥塊驅動的領從蹄式制動器均為非平衡式結構,也叫簡單非平衡式制動器。非平衡式制動器對輪轂軸承造成附加徑向載荷,而且領蹄摩擦襯片表面的單位壓力大于從蹄的,磨損較嚴重。為使襯片壽命均勻。可將從蹄的摩擦襯片包角適當?shù)販p小。對于如圖1.1(a)所示具有定心凸輪張開裝置的領從蹄制動器,在制動時,凸輪機構保證了兩蹄等位移,因此作用于兩蹄上的法向反力和由此產(chǎn)生的制動力矩應分別相等,而作用于兩蹄的張開力,則不等,并且必然有0的車輪,其力矩平衡方程為-=0 式(2.1)式中: 制動器對車輪作用的制動力矩,即制動器的摩擦力矩,其方向與

28、車輪旋轉方向相反, 地面作用于車輪上的制動力,即地面與輪胎之間的摩擦力,又稱地面制動力,其方向與汽車行駛方向相反,N; 車輪有效半徑,m。令 式(2.2)并稱之為制動器制動力,它是在輪胎周緣克服制動器摩擦力矩所需的力,因此又稱為制動周緣力。與地面制動力的方向相反,當車輪角速度0時,大小亦相等,且僅由制動器結構參數(shù)所決定。即取決于制動器結構形式,尺寸,摩擦副的摩擦系數(shù)及車輪半徑等,并與制動踏板力即制動系的液壓或氣壓成正比。當加大踏板力以加大,和均隨之增大。但地面制動力受附著條件的限制,其值不可能大于附著力,即 =Z 式(2.3) 或 = Z 式(2.4) 式中 輪胎與地面間的附著系數(shù); Z 地面

29、對車輪的法向反力。 當制動器制動力和地面制動力達到附著力值時,車輪即被抱死并在地面上滑移。此后制動力矩即表現(xiàn)為靜摩擦力矩,而=/即成為與相平衡以阻止車輪再旋轉的周緣力的極限值。當制動到=0以后,地面制動力達到附著力值后就不再增大,而制動器制動力由于踏板力增大使摩擦力矩增大而繼續(xù)上升(見圖2.1)圖 2.1 制動器制動力,地面制動力與踏板力的關系根據(jù)汽車制動時的整車受力分析,考慮到制動時的軸荷轉移,可求得地面對前,后軸車輪的法向反力,為:= = 式(2.5) 式中:G 汽車所受重力,N; L 汽車軸距,mm; 汽車質心離前軸距離,mm; 汽車質心離后軸距離,mm; 汽車質心高度,mm; 附著系數(shù)

30、。取一定值附著系數(shù)=0.8;所以在空,滿載時由式(2.5)可得前后制動反力Z為以下數(shù)值故 滿載時:=11424.43N =4255.57N 空載時:=9268.32N =1908.46N由以上兩式可求得前、后軸車輪附著力即為車輛工況前軸法向反力,N后軸法向反力,N汽車空載9268.321908.46汽車滿載11424.434255.57表2.1圖 2.2 制動時的汽車受力圖汽車總的地面制動力為 =+=Gq 式(2.6)式中q(q=) 制動強度,亦稱比減速度或比制動力; , 前后軸車輪的地面制動力。由以上兩式可求得前,后車輪附著力為= = 式(2.7)由已知條件及式(2.7)可得得前、后軸車輪附

31、著力即地面最大制動力為故 滿載時:=9139.54N =3404.45N 空載時:=7413.60N =1526.77N故滿載時前、后軸車輪附著力即地面最大制動力為:車輛工況前軸車輪附著力,N后軸車輪附著力,N汽車空載7413.601526.77汽車滿載9139.543404.45表 2.2上式表明:汽車附著系數(shù)為任意確定的路面上制動時,各軸附著力即極限制動力并非為常熟,而是制動強度q或總之動力的函數(shù)。當汽車各車輪制動器的制動力足夠時,根據(jù)汽車前,后的周和分配,前,后車輪制動器制動力的分配,道路附著系數(shù)和坡度情況等,制動過程可能出現(xiàn)的情況有三種,即 (1)前輪先抱死拖滑,然后后輪再抱死拖滑;

32、(2)后輪先抱死拖滑,然后前輪再抱死拖滑; (3)前,后輪同時抱死拖滑。 由以上三種情況中,顯然是最后一種情況的附著條件利用得最好。 由式(2.6),(2.7)不難求得在任何附著系數(shù)的路面上,前,后車輪同時抱死即前,后軸車輪附著力同時被充分利用的條件是+=+=G = 式(2.8)式中 前軸車輪的制動器制動力,=; 后軸車輪的制動器制動力,=; 前軸車輪的地面制動力; 后軸車輪的地面制動力; , 地面對前,后軸車輪的法向反力; G 汽車重力; , 汽車質心離前,后軸距離; 汽車質心高度。 由式(2.8)可知,前,后車輪同時抱死時,前,后制動器的制動力,是的函數(shù)。 由式(2.8)中消去,得 式(2

33、.9)式中 L 汽車的軸距。 將上式繪成以,為坐標的曲線,即為理想的前,后輪制動器制動力分配曲線,簡稱I曲線,如圖2.3所示。如果汽車前,后制動器的制動力,能按I曲線的規(guī)律分配,則能保證汽車在任何附著系數(shù)的路面上制動時,能使前后車輪同時抱死。然而,目前大多數(shù)兩軸汽車由其是貨車的前后制動力之比為一定值,并以前制動與總制動力之比來表明分配的比例,稱為汽車制動器制動力分配系數(shù) = 式(2.10)聯(lián)立式(2.8)和式(2.10)可得 = 帶入數(shù)據(jù)得 滿載時: =0.73 空載時: =0.82 由于在附著條件限定的范圍內,地面制動力在數(shù)值上等于相應的制動周緣力,故又可通稱為制動力分配系數(shù)。又由于滿載和空

34、載時的理想分配曲線非常接近,故應采用結構簡單的非感載式比例閥,同時整個制動系應加裝ABS防抱死制動系統(tǒng)。圖 2.3 某載貨汽車的I曲線與線2.2 同步附著系數(shù) 由式(2.10)可得表達式 = 式(2.11) 上式在圖2.3中是一條通過坐標原點斜率為的直線,它是具有制動器制動力分配系數(shù)的汽車的實際前,后制動器制動力分配線,簡稱線。圖中線與I曲線交于B點,可求出B點處的附著系數(shù)=,則稱線與I線交線處的附著系數(shù)為同步附著系數(shù)。它是汽車制動性能的一個重要參數(shù),由汽車結構參數(shù)所決定。同步附著系數(shù)的計算公式是: 式(2.12)由已知條件以及式(2.12)可得滿載時:=0.78空載時:=0.67根據(jù)設計經(jīng)驗

35、,空滿載的同步附著系數(shù)和應在下列范圍內:轎車:0.650.80;輕型客車、輕型貨車:0.550.70;大型客車及中重型貨車:0.450.65。故所得同步附著系數(shù)滿足要求。故所得同步附著系數(shù)滿足要求。制動力分配的合理性通常用利用附著系數(shù)與制動強度的關系曲線來評定。利用附著系數(shù)就是在某一制動強度q下,不發(fā)生任何車輪抱死所要求的最小路面附著系數(shù)。前軸車輪的利用附著系數(shù)可如下求得: 設汽車前輪剛要抱死或前、后輪剛要同時抱死時產(chǎn)生的減速度為,則 式(2.13)而由式 可得前軸車輪的利用附著系數(shù)為 式(2.14)同樣可求出后軸車輪的利用附著系數(shù)為: 式(2.15)由此得出利用附著系數(shù)與制動強度的關系曲線為

36、:圖2.4 制動強度與利用附著系數(shù)關系曲線空載圖2.5 制動強度與利用附著系數(shù)關系曲線滿載 根據(jù)GB 126761999附錄A,未裝制動防抱死裝置的M1類車輛應符合下列要求:(1) 值在0.20.8之間時,則必須滿足q0.1+0.85(-0.2) (2) q值在0.150.8之間,車輛處于各種載荷狀態(tài)時,1線,即前軸利用附著系數(shù)應在2線,即后軸利用附著系數(shù)線之上;但 q值在0.30.45時,若2不超過=q線以上0.05,則允許2線,即后軸利用附著系數(shù)線位于1線,即前軸利用附著系數(shù)線之上。由以上兩圖所示,設計的制動器制動力分配符合要求。2.3制動器最大制動力矩應合理的確定前,后制動器的制動力矩,

37、以保證汽車有良好的制動效能和穩(wěn)定性。最大制動力是在汽車附著質量被完全利用的條件下獲得的,這時制動力與地面作用于車輪的法向力,成正比。由式(2.8)可知,雙軸汽車前,后車輪附著力同時被充分利用或前,后同時抱死時的制動力之比為= 式(2.16) 式中 , 汽車質心離前,后軸距離; 同步附著系數(shù); 汽車質心高度。通常,上式的比值:轎車約為1.31.6;貨車約為0.50.7.制動器所能產(chǎn)生的制動力矩,受車輪的計算力矩所制約,即 = 式(2.17) = 式(2.18) 式中: 前軸制動器的制動力,; 后軸制動器的制動力,; 作用于前軸車輪上的地面法向反力; 作用于前軸車輪上的地面法向反力; 車輪有效半徑

38、。 根據(jù)市場上的大多數(shù)微型貨車輪胎規(guī)格及國家標準GB 9744-2007;選取的輪胎型145/80R12。由GB2978可得有效半徑=270mm對于常遇到的道路條件較差,車速較低因而選取了較小的同步附著系數(shù)值的汽車,為保證在的良好路面上(例如=0.8)能夠制動到后軸和前軸先后抱死滑移,前,后軸的車輪制動器所能產(chǎn)生的最大制動力矩為= 式(2.19)= 式(2.20) 由式(2.19),式(2.20)可得=2451.94 = =538.23當汽車各車輪制動器的制動力足夠時,根據(jù)汽車前、后軸的軸荷分配,前、后車輪制動器制動力的分配、道路附著系數(shù)和坡度情況等,制動過程可能出現(xiàn)的情況有三種,即(1)前輪

39、先抱死拖滑,然后后輪再抱死拖滑; (2)后輪先抱死拖滑,然后前輪再抱死拖滑;(3)前、后輪同時抱死拖滑。在以上三種情況中,顯然是最后一種情況的附著條件利用得最好。2.4 鼓式制動器的結構參數(shù)與摩擦系數(shù)2.4.1 制動鼓內徑D輸入力P一定時,制動鼓內徑越大,制動力矩越大,且散熱能力也越強。但增大D(圖 2.6 )受輪輞內徑限制。制動鼓與輪輞之間應保持足夠的間隙,通常要求該間隙不小于20mm,否則不僅制動鼓散熱條件太差,而且輪輞受熱后可能粘住內胎或烤壞氣門嘴。制動鼓應有足夠的壁厚,用來保證有較大的剛度和熱容量,以減小制動時的溫升。由選取的輪胎型號145/80R12,得Dr=1225.4=304.8mm 故 D=0.75304.8=228mm由QC/T3091999制動鼓工作直徑及制動蹄片寬度尺寸系列的規(guī)定,從表2.3輪輞直徑/in121314151620,22.5制動鼓最大內徑/mm轎車180200240260貨車220240260300320420表2.3取得制動鼓內徑=220mm輪輞直徑Dr=304.8mm,制動鼓的直徑D與輪輞直徑之比的范圍:D/Dr=0.700.83;經(jīng)過計算,初選數(shù)值約為0.75,屬于0.700.83范圍內。因此符合設計要求。圖2.6鼓式制動器的主要幾何參數(shù)2.4.2 摩擦襯片寬度b和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論