




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、相交線與平行線回顧:角的分類:特殊角:直角、平角、周角(周角的一半叫平角,平角的一半叫做直角)范圍角:銳角、鈍角(小于直角的角叫做銳角;大于直角而小于平角的角叫做鈍角)(所以小于平角的角分為銳角、直角、鈍角三類,我們只研究小于等于平角的角)關(guān)系角:位置關(guān)系角:同位角、內(nèi)錯(cuò)角、同旁內(nèi)角數(shù)量關(guān)系角:余角、補(bǔ)角數(shù)位關(guān)系角:互為鄰補(bǔ)角、對(duì)頂角互為鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角;(兩個(gè)角)有一條公共邊,(這兩個(gè)角的)另一條邊互為反向延長(zhǎng)線的兩個(gè)角;例如: 1 的鄰補(bǔ)角是 21 2 2 的鄰補(bǔ)角是 121 1 和 2 互為鄰補(bǔ)角對(duì)頂角:兩條直線相交所構(gòu)成的四
2、個(gè)角中,有公共頂點(diǎn)但沒有公共邊的兩個(gè)角是對(duì)頂角;一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(zhǎng)線,這樣的兩個(gè)角是對(duì)頂角;例如: 1 的對(duì)頂角是 22 2 的對(duì)頂角是 11 1 和 2 互為對(duì)頂角總結(jié) 1:鄰補(bǔ)角和對(duì)頂角的定義主要是用來區(qū)別和聯(lián)系:圖形頂點(diǎn)邊的關(guān)系大小關(guān)系對(duì)頂角有公共頂點(diǎn) 1 的兩邊與 2 的兩邊互為對(duì)頂角相等12反向延長(zhǎng)線;即 1= 2鄰補(bǔ)角有公共頂點(diǎn) 1 與 2 有一條邊公共,另1+2=180°12一邊互為反向延長(zhǎng)線;總結(jié) 2:鄰補(bǔ)角和對(duì)頂角的定義主要是強(qiáng)調(diào)相交線向下的兩者位置關(guān)系。即:有兩條直線相交,必定同時(shí)產(chǎn)生對(duì)頂角和鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):(1)互為鄰補(bǔ)角的兩個(gè)角和
3、為180°幾何語言:1+ 2=180°( 2)同角的補(bǔ)角相等,等角的補(bǔ)角相等。(度數(shù)相等)幾何語言: 1+ 2=180° 1+ 2=180° 2+ 3=180° 4+ 3=180° 1= 3(同角的補(bǔ)角相等)1= 3 2= 4(等角的補(bǔ)角相等)對(duì)頂角的性質(zhì):對(duì)頂角相等。幾何語言:1= 2總結(jié) 3:( 1)對(duì)頂角是成對(duì)出現(xiàn)的,對(duì)頂角是具有特殊位置關(guān)系的兩個(gè)角;( 2)如果 與 是對(duì)頂角,那么一定有 = ;反之如果 = ,那么 與 不一定是對(duì)頂角;( 3)如果 與 互為鄰補(bǔ)角,則一定有 + =180°;反之如果 + =180
4、176;,則 與 不一定是鄰補(bǔ)角;( 4)兩直線相交形成的四個(gè)角中,每一個(gè)角的鄰補(bǔ)角有兩個(gè),而對(duì)頂角只有一個(gè);( 5)兩直線相交形成的四個(gè)角中,鄰補(bǔ)角有四對(duì),而對(duì)頂角只有兩對(duì);( 6)對(duì)頂角、鄰補(bǔ)角是數(shù)位關(guān)系角,它們只要有位置關(guān)系,就能確定數(shù)量關(guān)系,這在幾何圖形運(yùn)算中可作為已知條件來用,是含有相交線的圖形解題中的必要手段;例如:1/22n 條直線相交于一點(diǎn),就有n(n+1) 對(duì)對(duì)頂角;1+2+3+4+.+(n-1)+n(1)n+(n-1)+(n-2)+.+1(2)(1)+(2)÷ 2= n(n+1)/2又兩直線相交形成的四個(gè)角中,對(duì)頂角有兩對(duì); (1)+(2)÷ 2
5、5; 2 = n(n+1)例題:如右圖,直線AB、 CD相交于點(diǎn)O, 1 2=64,則 AOC=_;相交線與平行線練習(xí)(一)對(duì)頂角、鄰補(bǔ)角1. 下面四個(gè)圖形中, 1 與 2 是對(duì)頂角的圖形的個(gè)數(shù)是()A0B1C2D3122211122. 如圖所示,下列判斷正確的是()11212122A 、圖中 1 和 2 是一組對(duì)頂角B 、圖中 1 和 2 是一組對(duì)頂角C、圖中 1 和 2 是一對(duì)鄰補(bǔ)角D、圖中 1 和 2 互為鄰補(bǔ)角3. 如圖,直線 AB、 CD相交于 O點(diǎn), AOE 90°(1) 1 和 2 叫做 _角; 1 和 4 互為 _角; 2 和 3 互為 _角; 1 和 3 互為 _角
6、; 2 和 4 互為 _角(2) 若 120°,那么 2_ ; 3 BOE _ _° _° _°; 4 _ 1 _° _° _°4. 如圖,直線 AB、 CD相交于點(diǎn) O, 1 2則 1 的對(duì)頂角是 _, 4 的鄰補(bǔ)角是 _ 2 的補(bǔ)角是 _5. 判斷題(對(duì)的打“”,錯(cuò)的打“×”)( 1)兩條直線相交所成的四個(gè)角中,不相鄰的兩個(gè)角是對(duì)頂角()( 2)不是對(duì)頂角的角不相等()( 3)對(duì)頂角的補(bǔ)角相等()( 4)有公共頂點(diǎn)且有一條公共邊的兩個(gè)角互為鄰補(bǔ)角()( 5)如果兩個(gè)角是鄰補(bǔ)角,那么它們一定互為補(bǔ)角()( 6)把
7、一個(gè)角的一邊反向延長(zhǎng),則可得到這個(gè)角的鄰補(bǔ)角()( 7)兩條直線相交, 只要其中一個(gè)角的大小確定了那么另外三個(gè)角的大小就確定了()( 8)對(duì)頂角相等,但不互補(bǔ);鄰補(bǔ)角互補(bǔ),但不相等()( 9)若 AOB BOC 180°,則點(diǎn) A、 O、 C 必在同一直線上 ()6. 下列說法正確的是()A. 有公共頂點(diǎn),且方向相反的兩個(gè)角為對(duì)頂角B. 有公共頂點(diǎn),且又相等的角為對(duì)頂角C. 角的兩邊互為反向延長(zhǎng)線且有公共頂點(diǎn)的兩個(gè)角為對(duì)頂角D. 有公共頂點(diǎn)的兩個(gè)角為對(duì)頂角2/227. 如果兩個(gè)角的平分線相交成90°的角,那么這兩個(gè)角是()A對(duì)頂角 B互補(bǔ)的兩個(gè)角 C互為鄰補(bǔ)角 D 以上答案
8、都不對(duì)8. 下列判斷正確的個(gè)數(shù)是 _個(gè)兩條直線相交,有公共頂點(diǎn)沒有公共邊的兩個(gè)角如果兩個(gè)角有共公頂點(diǎn),且角平分線互為反向延長(zhǎng)線,那么這兩個(gè)角是對(duì)頂角對(duì)頂角的平分線在同一條直線上以同一個(gè)角為鄰補(bǔ)角且不重合的兩個(gè)角是對(duì)頂角9. 兩條相交直線與另外一條直線在同一平面內(nèi), 它們的交點(diǎn)個(gè)數(shù)是 ( )A.1B.2C.3或2D.1或2或310. 平面內(nèi)三條直線相交,最多能構(gòu)成對(duì)頂角_對(duì),最多能構(gòu)成鄰補(bǔ)角 _ 對(duì)(四條、 n 條呢?)11. 如圖所示,直線l , l ,l3相交于一點(diǎn),則下列答案中,全對(duì)的一組是( )12(A) 1 90°, 2 30°, 3 4 60°(B) 1
9、 3 90°, 2 4 30°(C) 1 3 90°, 2 4 60°(D) 1 3 90°, 2 60°, 430°12. 如左下圖,若 2 3=3 1, 2=_°, 3=_°, 4=_°。341213. 已知:如圖,直線,c兩兩相交, 1 23, 2 86°求 4 的度數(shù)a b14. 如圖,直線AB, CD 相交于O, OE 平分 BOD, OF 平分 COB, AOD DOE 4 1 ,則AOF=_°垂直:當(dāng)兩條直線相交所成的四個(gè)角中,有一個(gè)角是直角時(shí),就說這兩條直線互
10、相垂直,其中的一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足;幾何語言記作:如圖所示:AB CD,垂足為O;C例題:1. 下列說法正確的是 ( ).A. 兩條直線相交成四個(gè)角, 如果有三個(gè)角相等, 那么這兩條直線垂直;AOBB. 兩條直線相交成四個(gè)角, 如果有兩個(gè)角相等, 那么這兩條直線垂直;DC. 兩條直線相交成四個(gè)角, 如果有一對(duì)對(duì)頂角互余 , 那么這兩條直線垂直;D. 兩條直線相交成四個(gè)角, 如果有兩個(gè)角互補(bǔ), 那么這兩條直線垂直;2. 如圖,斜坡與地面成30°,現(xiàn)要在斜坡上豎一電線桿,當(dāng)電線桿與斜坡成的1 °時(shí),電線桿與地面垂直;130圖3/223. 如圖,直線A
11、B, CD, EF 相交于點(diǎn) O,ABCD, OG平分 AOE, FOD = 28o,則 BOE = 度,AOG =度 .4. 如圖 8, 要證 BO OD,請(qǐng)完善證明過程 , 并在括號(hào)內(nèi)填上相應(yīng)依據(jù)證明: AO CO AOC=_(_)D又 COD=40°( 已知 ) AOD=_A BOC= AOD(已知 ) BOD=_, _ _(_):CBO(8)總結(jié):1. 遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直時(shí),指它們所在的直線互相垂直;2.垂直的性質(zhì):兩條直線互相垂直,所成的四個(gè)角為90°(由位置確定數(shù)量)3.垂直的判定:定義判定(由數(shù)量確定位置)p1:過一點(diǎn)
12、有且只有一條直線與已知直線垂直垂線性質(zhì)( 與平行公理相比較記 )垂線性質(zhì)P2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短;簡(jiǎn)稱:垂線段最短;例如:AOB1. 經(jīng)過直線上一點(diǎn)做已知直線的垂線:已知:如圖, P 是直線 AB上一點(diǎn)。C求作:直線 CD,是 CD經(jīng)過點(diǎn) P,且 CD AB。QMNAPBAPB作法:D( 1)以 P 為圓心,任意長(zhǎng)為半徑畫弧,交AB于 M、 N;( 2)分別以 M、 N為圓心,大于 1 MN 的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)Q;D2PP( 3)過 D、 Q作直線 CD;則直線 CD是求作的直線;2. 經(jīng)過直線外一點(diǎn)作已知直線的垂線已知:如圖,直線 AB及外一點(diǎn) P。A
13、BA MNB求作:直線 CD,使 CD經(jīng)過點(diǎn) P,且 CD AB。作法:Q( 1)以 P 為圓心,任意長(zhǎng)為半徑畫弧,交AB于 M、 N;C1 MN 長(zhǎng)度的一半為半徑畫弧,兩弧交于點(diǎn)( 2)分別以 M、 N圓心,大于Q;2( 3)過 P、 Q作直線 CD。則直線CD就是所求作的直線。3. 如圖,計(jì)劃把河水引到水池 A 中,先引 ABCD,垂足為 B,然后沿 AB開渠,能使所開的渠道最短,這樣設(shè)計(jì)的依據(jù)是 _ ;4/22點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離;如圖, PO AB,點(diǎn) P 到直線 AB 的距離是 PO的長(zhǎng);PO是垂線段。 PO是點(diǎn) P 到直線 AB所有
14、線段中最短的一條;例題:1. 下列說法正確的是 ( )A. 在同一平面內(nèi) , 過已知直線外一點(diǎn)作這條直線的垂線有且只有一條B. 連結(jié)直線外一點(diǎn)和直線上任一點(diǎn) , 使這條線段垂直于已知直線C. 作出點(diǎn) P 到直線的距離D. 連結(jié)直線外一點(diǎn)和直線上任一點(diǎn)的線段長(zhǎng)是點(diǎn)到直線的距離2. 下列說法正確的有 ()平面內(nèi) , 過直線上一點(diǎn)有且只有一條直線垂直于已知直線。平面內(nèi),過直線外一點(diǎn)有且只有一條直線垂直于已知直線。在平面內(nèi) , 過一點(diǎn)可以任意畫一條直線垂直于已知直線。在平面內(nèi) , 有且只有一條直線垂直于已知直線 .A.1 個(gè)B.2個(gè)C.3個(gè)D.4個(gè)3. 如圖 ,MNAB,垂足為 M點(diǎn),MN 交 CD于
15、 N, 過 M點(diǎn)作 MGCD,垂足為于H點(diǎn) , 其中線段 GM的長(zhǎng)度是 _到 _的距離 , 線段 MN的長(zhǎng)度是離 , 點(diǎn) N 到直線 MG 的距離是 _;MpPAOBG,EF 過點(diǎn) N 點(diǎn) , 且 EFAB,交 MG_到 _的距離 , 又是 _的距BAFCGNDEH垂線、垂線段、兩點(diǎn)間距離、點(diǎn)到直線的距離的聯(lián)系與區(qū)別:垂線與垂線段的區(qū)別:區(qū)別:垂線是一條直線,不可度量長(zhǎng)度;垂線段是一條線段,可以度量長(zhǎng)度;聯(lián)系:具有垂直于已知直線的共同特征;( 垂直的性質(zhì) )兩點(diǎn)間距離與點(diǎn)到直線的距離區(qū)別:兩點(diǎn)間的距離是點(diǎn)與點(diǎn)之間,點(diǎn)到直線的距離是點(diǎn)與直線之間;聯(lián)系:都是線段的長(zhǎng)度;點(diǎn)到直線的距離是特殊的兩點(diǎn)
16、( 即已知點(diǎn)與垂足 ) 間距離;線段與距離 :距離是線段的長(zhǎng)度,是一個(gè)量;線段是一種圖形,它們之間不能等同;相交線與平行線練習(xí)(二)垂直1. 判斷下列語句是否正確 ( 正確的畫“”,錯(cuò)誤的畫“×”)( 1)兩條直線相交,若有一組鄰補(bǔ)角相等,則這兩條直線互相垂直()( 2)若兩條直線相交所構(gòu)成的四個(gè)角相等,則這兩條直線互相垂直()( 3)一條直線的垂線只能畫一條()( 4)平面內(nèi),過線段 AB外一點(diǎn)有且只有一條直線與AB垂直()( 5)點(diǎn)到直線的距離,是過這點(diǎn)畫這條直線的垂線,這點(diǎn)與垂足的距離()2. 下列說法中正確的是()A 有且只有一條直線垂直于已知直線B從直線外一點(diǎn)到這條直線的垂
17、線段,叫做這點(diǎn)到這條直線的距離C互相垂直的兩條直線一定相交D直線外一點(diǎn) A 與直線 c 上各點(diǎn)連接的所有線段中,最短線段長(zhǎng)是3cm,則點(diǎn) A 到直線 c 的距離是5/223cm3. 下列關(guān)系中,互相垂直的兩條直線是()A、互為對(duì)頂角的兩角的平分線B、互為補(bǔ)角的兩角的平分線C、兩直線相交所成的四個(gè)角中相鄰兩角的角平分D 、相鄰兩角的角平分線4. 如圖,點(diǎn) P 為直線 m外一點(diǎn),點(diǎn) P 到直線 m上的三點(diǎn) A、 B、C的距離分別為 PA4cm, PB 6cm,PC 3cm,則點(diǎn) P 到直線 m的距離為 ()(A)3cm(B) 小于 3cm(C) 不大于 3cm(D) 以上結(jié)論都不對(duì)5. 如右圖BC
18、 AC, CB=8cm, AC=6cm, AB=10cm,那么點(diǎn)B 到 AC 的距離是 _,點(diǎn)A 到 BC 的距離是_, A、 B 兩點(diǎn)間的距離是_;6. 如圖所示 , 下列說法不正確的是 ( )A. 點(diǎn) B 到 AC的垂線段是線段 AB。B. 點(diǎn) C 到 AB 的垂線段是線段 ACC. 線段 AD是點(diǎn) D 到 BC的垂線段。D. 線段 BD是點(diǎn) B 到 AD的垂線段AADCBBC7. 如圖, AC BC于點(diǎn) C,CD AB于點(diǎn) D, DE BC于點(diǎn) E,能表示點(diǎn)到直線 ( 或線段 ) 的距離的線段有()(A)3條(B)4條(C)7條(D)8條8.和一個(gè)已知點(diǎn)P距離等于2 厘 M的直線可畫()
19、條A1 B2 C3D無數(shù)9.若直線 a 與直線 b 相交于點(diǎn) A,則直線 b 上到直線 a 距離等于 2cm 的點(diǎn)的個(gè)數(shù)是 ()(A)0(B)1(C)2(D)310. 如圖,已知 AOB及點(diǎn) P,分別畫出點(diǎn) P 到射線 OA、 OB的垂線段 PM及 PN圖 a圖 b圖 c11. 如圖 , ABC=90° , 1= 2, DCA= CAB,求證 :(1)CD CB。 (2)CD? 平分 ACE.ADB 2 1EC12. 如圖 ,OE,OF 分別是 AOC與 BOC的平分線 , 且 OE OF,求證 :A,O,B? 三點(diǎn)在同一直線上.CEFAOB13. 如下圖,已知OA OC, OB O
20、D,且 AOD=3 BOC,求 BOC的度數(shù)。CD6/22BOAED14.A4B2 O 1已知 OA OC于點(diǎn) O, AOB: AOC=2:3,那么 BOC的度數(shù)是 _。15.如圖 5, 直線 AB,CD相交于 O,OE平分 AOD,FOOD于 O, 1=40° , 則 2=?_, 4=_;FC(5)16. 如圖直線 AB、 CD相交于點(diǎn) O, OE AB, O為垂足,如果 EOD = 38°,則 AOC =, COB =;17. 已知:如圖,三條直線, ,相交于,且 , 70°,若OG平分求AB CD EFOCD EFAOEBOFDOG同一平面內(nèi)兩條直線的位置關(guān)
21、系:1. 在同一平面內(nèi),兩條直線的位置關(guān)系有相交和平行。2. 相交 :在同一平面內(nèi),有 一個(gè)公共交點(diǎn) 的兩條直線稱為相交線。3. 平行: 在同一平面內(nèi),不相交的兩條直線叫做平行線,直線a 與直線 b 互相平行,記作 a b。總結(jié):( 1)在同一平面內(nèi),兩條直線的位置關(guān)系只有兩種:相交;平行。( 2)因此當(dāng)我們得知在同一平面內(nèi)兩直線不相交時(shí),就可以肯定它們平行;反過來也一樣(這里,我們把重合的兩直線看成一條直線)( 3)判斷同一平面內(nèi)兩直線的位置關(guān)系時(shí),可以根據(jù)它們的公共點(diǎn)的個(gè)數(shù)來確定:有且只有一個(gè)公共點(diǎn),兩直線相交;無公共點(diǎn),則兩直線平行;兩個(gè)或兩個(gè)以上公共點(diǎn),則兩直線重合(因?yàn)閮牲c(diǎn)確定一條直
22、線)平行公理平行線的存在性與惟一性經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行幾何語言: a ca b bc例題:1. 下列說法正確的有 ( )不相交的兩條直線是平行線;在同一平面內(nèi),兩條不相交的線段是平行線;兩條射線或線段平行,是指他們所在的直線平行;不相交的兩條射線不一定平行A.0 個(gè)B.1 個(gè)C.2 個(gè)D.3 個(gè)2. 一條直線與另兩條平行線的關(guān)系是()7/22A. 一定與兩條平行線平行B. 可能與兩條平行線中的一條平行、一條相交C. 一定與兩條平行線相交D. 與兩條平行線都平行或都相交。總結(jié):同一平面內(nèi)的三條直線的
23、位置關(guān)系:0 交點(diǎn),一個(gè)交點(diǎn),兩個(gè)交點(diǎn),三個(gè)交點(diǎn);3. 設(shè) a 、 b、 c 為平面上三條不同直線,若 a / b, b / c,則 a 與 c 的位置關(guān)系是 _;若 a b,bc ,則 a 與 c 的位置關(guān)系是 _;若 a / b, bc ,則 a 與 c 的位置關(guān)系是 _ 同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:形成條件:三條直線有兩個(gè)交點(diǎn)或三個(gè)交點(diǎn)(即:三線形成八角和十二角)其中,與另外兩條都相交的直線,我們稱為“截線”,另外兩條直線稱為“被截線”;同位角:位于兩條被截線的同一方位;位于截線的同旁。( “F”字形 )內(nèi)錯(cuò)角:位于兩條被截線內(nèi)部之間;分列截線的兩側(cè)。(“ Z”字形)同旁內(nèi)角 :位于兩條被
24、截線內(nèi)部之間;位于截線的同旁。(“ U”字形)例如:如圖,直線 a,b 被直線 c 所截,在所構(gòu)成的八個(gè)角中指出,下列各對(duì)角屬于哪種特殊位置關(guān)系的角?(1) 1 與 2 是 _; (2) 5 與 7 是 _;(3) 1 與 5 是 _; (4) 5 與 3 是 _;(5) 5 與 4 是 _; (6) 8 與 4 是 _;(7) 4 與 6 是 _; (8) 6 與 3 是 _;(9) 3 與 7 是 _; (10) 6 與 2 是 _圖中,對(duì)頂角有 _ ; _對(duì);鄰補(bǔ)角有 _ ; _對(duì);同位角有 _; _對(duì);內(nèi)錯(cuò)角有 _; _對(duì);同旁內(nèi)角有 _ ; _對(duì)。例題:1、 1 與 2 是_ 角。1
25、2、 3 與 4 是_ 角。33、 3 與 2 是_ 角。244、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:( 1)由幾條直線形成?( 2)是否成對(duì)出現(xiàn)?( 3)頂點(diǎn)是否共用?( 4)與角不在同一直線的邊的長(zhǎng)短有關(guān)嗎?( 5)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是由兩條直線被第三條直線所截成的。如何尋找第三條直線?相交線與平行線練習(xí)(三)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角1. 如圖,圖中 1 與 2 是同位角的是()122121128/22A、B、C、D、2. 如圖, 1 和 2 是內(nèi)錯(cuò)角,可看成是由直線()(A) AD, BC被 AC所截構(gòu)成(B) AB, CD被 AC所截構(gòu)成(C) AB, CD被 AD所截構(gòu)成(D) AB,
26、CD被 BC所截構(gòu)成3. 如圖所示,圖中用數(shù)字標(biāo)出的角中,同位角有 _;內(nèi)錯(cuò)角有 _;同旁內(nèi)角有 _4. 如圖所示,(1) AED和 ABC可看成是直線 _、 _被直線 _所截得的 _角;(2) EDB和 DBC可看成是直線 _、 _被直線 _所截得的 _角;(3) EDC和 C可看成是直線 _、 _被直線 _所截得的 _角5. 如圖,直線 AB, CD與直線 EF, GH分別相交,圖中的同旁內(nèi)角共有 ( )(A)4 對(duì)(B)8 對(duì)(C)12對(duì)(D)16對(duì)6.(1) 如圖,與 2 互為同旁內(nèi)角的是 _。(2) 如圖,與 3 互為同位角的是 _。AE(3) 如圖, 6 與 9 是_, 它們是直線
27、 _與9_ 被直線 _ 所截得的;3與5是直線6_與直線 _被直線 _所截得的;與75 1 是同位角的有 _;在標(biāo)有數(shù)字的九個(gè)角中,2同位角共有 _ 對(duì),內(nèi)錯(cuò)角共有 _對(duì),同旁3148內(nèi)角共有 _對(duì),大小一定相等的角有_ 對(duì)。平行線的判定:BCD定義判定 :在同一平面內(nèi),不相交的兩條直線就一定平行;(三條直線:0、 1、 2、3 個(gè)交點(diǎn))平行公理推論判定:平行于同一條直線的兩條直線互相平行;幾何語言: a ca b bc公垂線判定:在同一平面內(nèi),垂直于同一條直線的兩條直線互相平行;幾何語言:a bac bc同位角、內(nèi)錯(cuò)角、同旁內(nèi)角判定:兩條直線被第三條直線所截,如果所形成的同位角相等,那么這兩
28、條直線互相平行。簡(jiǎn)略為:同位角相等,兩直線平行。兩條直線被第三條直線所截,如果所形成的內(nèi)錯(cuò)角相等,那么這兩條直線互相平行。簡(jiǎn)略為:內(nèi)錯(cuò)角相等,兩直線平行。兩條直線被第三條直線所截,如果所形成的同旁內(nèi)角互補(bǔ),那么這兩條直線互相平行。簡(jiǎn)略為:同旁內(nèi)角互補(bǔ),兩直線平行。平行線間的距離:同時(shí)垂直兩條平行線,且夾在兩條平行線間的垂線段的長(zhǎng)度,叫做這兩條平行線間的距離。例題:9/221. 下列說法錯(cuò)誤的是()A在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行;B 如果一條直線垂直于兩條平行線中的一條,那么它一定也垂直于另一條;C兩條平行線間的垂線段就是這兩條直線間的距離;D如果 a c,同
29、時(shí) ab,那么 a c b;2. 已知:如圖,請(qǐng)分別依據(jù)所給出的條件,判定相應(yīng)的哪兩條直線平行?并寫出推理的根據(jù)(1) 如果 2 3,那么 _(_ , _)(2) 如果 2 5,那么 _(_ , _)(3) 如果 2 1 180°,那么 _(_ , _)(4) 如果 5 3,那么 _(_ , _)(5) 如果 4 6 180°,那么 _(_ , _)(6) 如果 6 3,那么 _(_ , _)3. 已知:如圖,請(qǐng)分別根據(jù)已知條件進(jìn)行推理,得出結(jié)論,并在括號(hào)內(nèi)注明理由(1) B 3( 已知 ) _ _(_ , _)(2) 1 D( 已知 ) _ _(_ , _)(3) 2 A
30、( 已知 ) _ _(_ , _)(4) B BCE 180° ( 已知 ) , _ _(_ , _)4. 已知:如圖, 1 2求證: AB CD(1) 分析:如圖,欲證 AB CD,只要證 1 _證法 1: 1 2( 已知 )又 3 2() 1 _() AB CD(_ , _)(2) 分析:如圖,欲證 AB CD,只要證 3 4證法 2: 4 1, 3 2()又 1 2,( 已知 ) 3_() ABCD(_ ,_)5. 如圖, CD DA, DA AB, 1 2試確定射線 DF與 AE的位置關(guān)系,并說明你的理由(1) 問題的結(jié)論: DF_AE(2) 證明思路分析:欲證 DF_AE,
31、只要證 3 _(3) 證明過程:證明: CD DADA AB() CDA DAB _° ( 垂直定義 )又 1 2()10/22 CDA 1 _ _( 等式的性質(zhì) )即 3 _ DF_AE(_ ,_)6. 已知:如圖,1 2, 3 4 180°試確定直線a 與直線 c 的位置關(guān)系,并說明你的理由(1) 問題的結(jié)論: a_c(2) 證明思路分析:欲證a_c,只要證 _ _且 _ _(3) 證明過程:證明: 1 2( ) a _(_ , _) 3 4 180° () c _ (_ , _) a_c(_)7. 已知:如圖, ABC ADC, BF、 DE分別平分 ABC
32、與 ADC且 1 3求證: AB DC證明: ABC ADC11)ABCADC.(22又 、分別平分與BFDEABCADC11ABC, 21()2ADC .2 _ _() 1 3() 2 _( 等量代換 ) _ _()平行線的性質(zhì):如果兩條平行直線被第三條直線所截,那么所形成的同位角相等。如果兩條平行直線被第三條直線所截,那么所形成的內(nèi)錯(cuò)角相等。如果兩條平行直線被第三條直線所截,那么所形成的同旁內(nèi)角互補(bǔ)。例題:1. 如圖,根據(jù)已知條件進(jìn)行推理,得出結(jié)論,并在括號(hào)內(nèi)注明理由(1) 如果 AB EF,那么 2 _理由是 _ (2) 如果 ABDC,那么 3 _理由是 _(3) 如果 AFBE,那么
33、 1 2 _理由是 _2已知:如圖,DE AB請(qǐng)根據(jù)已知條件進(jìn)行推理,分別得出結(jié)論,并在括號(hào)內(nèi)注明理由(1) DE AB( ) 2 _(_ , _)(2) DE AB( ) 3 _(_ , _)(3) DE AB( ) 1 _ 180°(_ , _)3已知:如圖,1 2 180°求證:3 4證明思路分析:欲證3 4,只要證 _ _證明: 1 2180° () _ _ (_ ,_) 3 4(_ , _)4已知:如圖,AB CD, 1 B求證: CD是 BCE的平分線證明思路分析:欲證CD是 BCE的平分線,只要證_ _11/22證明: AB CD() 2 _(_ ,
34、 _) 1 B() _ _( 等量代換 )即 CD是 _5已知:如圖,四邊形ABCD中, AB CD, AD BC, B 50°求 D的度數(shù)分析:可利用DCE作為中間量過渡解法 1: AB CD B 50° () DCE _ _° (_ , _)又 AD BC() D _ _° (_ , _)解法 2: AD BC, B 50° () A B _(_ , _)即 A_ _ ° _° _° DC AB( ) D A _(_ , _)即 D_ _ ° _° _°6已知:如圖,AB CD,
35、AP平分 BAC,CP平分 ACD,求 APC的度數(shù)解:過 P 點(diǎn)作 PM AB交 AC于點(diǎn) M ABCD() BAC _ 180° ()又PM AB1 _()且 PM _( 平行于同一直線的兩直線也互相平行)3 _( 兩直線平行,內(nèi)錯(cuò)角相等) AP平分 BAC, CP平分 ACD()111_()_ ,42211190 ()4BACACD22 2 3 1 4 90° ()APC總結(jié):兩直線平行時(shí),同旁內(nèi)角的角平分線_相交線與平行線練習(xí)(四)平行線的判定和性質(zhì)1. 下列說法:兩條直線平行,同旁內(nèi)角互補(bǔ);同位角相等,兩直線平行;垂直于同一直線的兩直線平行;其中是平行線的性質(zhì)的是
36、( )ABA. B. 和C. D.和12. 兩個(gè)角的兩邊分別平行,其中一個(gè)角是60°,則另一個(gè)角是()( A)60°E( B)120°( C) 60°或 120°( D) 無法確定C23. 不相鄰的兩個(gè)直角 , 如果它們有一邊在同一直線上, 那么另一邊相互 ()DFA. 平行 B. 垂直C.平行或垂直D.平行或垂直或相交4. 一輛汽車在筆直的公路上行駛,在兩次轉(zhuǎn)彎后,仍在原來的方向上平行前進(jìn),那么這兩次轉(zhuǎn)彎的角度可以是()A、先右轉(zhuǎn)8 0o,再左轉(zhuǎn) 100 oB、先左轉(zhuǎn)80 o ,再右轉(zhuǎn)80 oC、先左轉(zhuǎn)80 o ,再左轉(zhuǎn) 100 oD、先右轉(zhuǎn)
37、80 o ,再右轉(zhuǎn)805. 1 和 2 是直線 AB、 CD被直線 EF 所截而成的內(nèi)錯(cuò)角 , 那么 1和 2的大小關(guān)系是 ( )12/22A.1=2B.1>2。C.1<2D.無法確定6.如圖是過直線外一點(diǎn)作已知直線的平行線的方法,其依據(jù)是()A. 同位角相等,兩直線平行B. 內(nèi)錯(cuò)角相等,兩直線平行C. 同旁內(nèi)角互補(bǔ),兩直線平行D. 兩直線平行,同位角相等7.兩條平行線被第三條直線所截,則()A. 一對(duì)內(nèi)錯(cuò)角的平分線互相垂直B.一對(duì)同旁內(nèi)角的平分線互相垂直C. 一對(duì)對(duì)頂角的平分線互相垂直D.一對(duì)同位角的平分線互相垂直8.兩條平行線被第三條直線所截,則()A. 一對(duì)內(nèi)錯(cuò)角的平分線互相
38、平行B.一對(duì)同旁內(nèi)角的平分線互相平行ADC. 一對(duì)對(duì)頂角的平分線互相平行D.一對(duì)鄰補(bǔ)角的平分線互相平行149. 如圖所示 , 下列條件中 , 能判斷 AB CD的是 ()A. BAD= BCDB. 1= 2。32C. 3= 4 D. BAC= ACDBC10. 如圖, DHEGEF,且 DCEF,那么圖中和1 相等的角的個(gè)數(shù)是()A.2B.4C.5D.6ADEBC11.如右上圖, BE平分 ABC, DE BC,圖中相等的角共有()A.3 對(duì)B.4對(duì)C.5對(duì)D.6對(duì)12.如圖 1,直線 a b,點(diǎn) B 在直線 b 上,且 ABBC , 1 = 55o,則 2的度數(shù)為 ()A. 35 o B.45oC. 55o D. 125o13. 如圖, 1 = 82o , 2 = 98o , 3 = 80o ,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 計(jì)算機(jī)二級(jí)VB考試追蹤情況試題及答案
- 自信備考擁抱挑戰(zhàn)2025年計(jì)算機(jī)二級(jí)VB考試試題及答案
- 2025年中國(guó)金屬銫市場(chǎng)調(diào)查研究報(bào)告
- 計(jì)算機(jī)科學(xué)前沿探討題試題及答案
- 2025年中國(guó)輪胎吊市場(chǎng)調(diào)查研究報(bào)告
- 湖北省武漢市東湖高新區(qū)2025屆八年級(jí)數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析
- 法學(xué)概論相關(guān)法律法規(guī)及試題及答案
- 初三物理試題及答案
- 船員駕駛試題及答案
- 財(cái)務(wù)分析試題及答案
- 2025年一級(jí)注冊(cè)建筑師歷年真題答案
- 十五五時(shí)期經(jīng)濟(jì)社會(huì)發(fā)展座談會(huì)十五五如何謀篇布局
- 初中電與磁試題及答案
- 浙江開放大學(xué)2025年《行政復(fù)議法》形考作業(yè)1答案
- 國(guó)家開放大學(xué)《西方經(jīng)濟(jì)學(xué)(本)》章節(jié)測(cè)試參考答案
- 湖南省炎德英才名校聯(lián)合體2025屆高考考前仿真聯(lián)考二英語+答案
- 重慶地理會(huì)考試卷題及答案
- 福建省三明市2025年普通高中高三畢業(yè)班五月質(zhì)量檢測(cè)地理試卷及答案(三明四檢)
- 2024年四川省天全縣事業(yè)單位公開招聘醫(yī)療衛(wèi)生崗筆試題帶答案
- 人教版(2024)七年級(jí)下冊(cè)英語Unit 5 Here and Now 教案
- 【7語期中】合肥市包河區(qū)2024-2025學(xué)年七年級(jí)下學(xué)期4月期中語文試題
評(píng)論
0/150
提交評(píng)論