




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高考考點(diǎn)11 概率與統(tǒng)計(jì) 1。 在這個(gè)自然數(shù)中,任取個(gè)數(shù) (I)求這個(gè)數(shù)中恰有個(gè)是偶數(shù)的概率; (II)設(shè)為這個(gè)數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為,則有兩組相鄰的數(shù)和,此時(shí)的值是)求隨機(jī)變量的分布列及其數(shù)學(xué)期望 2。 某學(xué)生在上學(xué)路上要經(jīng)過(guò)4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是,遇到紅燈時(shí)停留的時(shí)間都是2 min。()求這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率;()這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間至多是4min的概率。 3。 某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請(qǐng)兩位專(zhuān)家,獨(dú)立地對(duì)每位大學(xué)生的創(chuàng)業(yè)方案進(jìn)行評(píng)審假設(shè)評(píng)審結(jié)果為“支持"或“
2、不支持”的概率都是。若某人獲得兩個(gè)“支持”,則給予10萬(wàn)元的創(chuàng)業(yè)資助;若只獲得一個(gè)“支持”,則給予5萬(wàn)元的資助;若未獲得“支持”,則不予資助,令表示該公司的資助總額 (1) 寫(xiě)出的分布列; (2) 求數(shù)學(xué)期望 4. 一個(gè)盒子里裝有4張大小形狀完全相同的卡片,分別標(biāo)有數(shù)2,3,4,5;另一個(gè)盒子也裝有4張大小形狀完全相同的卡片,分別標(biāo)有數(shù)3,4,5,6.現(xiàn)從一個(gè)盒子中任取一張卡片,其上面的數(shù)記為x;再?gòu)牧硪缓凶永锶稳∫粡埧ㄆ?,其上面的?shù)記為y,記隨機(jī)變量,求的分布列和數(shù)學(xué)期望。 5. 某人向一目射擊4次,每次擊中目標(biāo)的概率為。該目標(biāo)分為3個(gè)不同的部分,第一、二、三部分面積之比為1:3:6。擊中目
3、標(biāo)時(shí),擊中任何一部分的概率與其面積成正比。()設(shè)X表示目標(biāo)被擊中的次數(shù),求X的分布列;()若目標(biāo)被擊中2次,A表示事件“第一部分至少被擊中1次或第二部分被擊中2次”,求P(A) 6。 為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、?,F(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè)。求:(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率; (II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.7。 甲、乙二人進(jìn)行一次圍棋比賽,約定先勝3局者獲得這次比賽的勝利,比賽結(jié)束.假設(shè)在一局中,甲獲勝的概率為0.6,乙獲勝的概率為0。4,各局比賽
4、結(jié)果相互獨(dú)立.已知前2局中,甲、乙各勝1局。()求再賽2局結(jié)束這次比賽的概率;()求甲獲得這次比賽勝利的概率。8. 為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的.、,現(xiàn)在3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè)。 (I)求他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率;(II)記為3人中選擇的項(xiàng)目屬于基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程的人數(shù),求的分布列及數(shù)學(xué)期望。9。 為振興旅游業(yè),四川省2009年面向國(guó)內(nèi)發(fā)行總量為2000萬(wàn)張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡(jiǎn)稱(chēng)金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡(jiǎn)稱(chēng)銀卡)。某
5、旅游公司 組織了一個(gè)有36名游客的旅游團(tuán)到四川名勝旅游,其中是省外游客,其余是省內(nèi)游客。 在省外游客中有持金卡,在省內(nèi)游客中有持銀卡。 (I)在該團(tuán)中隨機(jī)采訪(fǎng)3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;(II)在該團(tuán)的省內(nèi)游客中隨機(jī)采訪(fǎng)3名游客,設(shè)其中持銀卡人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望。本小題主要考察相互獨(dú)立事件、互斥事件、隨機(jī)變量的分布列、數(shù)學(xué)期望等概率計(jì)算,考察運(yùn)用概率只是解決實(shí)際問(wèn)題的能力。10。 某單位為綠化環(huán)境,移栽了甲、乙兩種大樹(shù)各2株設(shè)甲、乙兩種大樹(shù)移栽的成活率分別為和,且各株大樹(shù)是否成活互不影響求移栽的4株大樹(shù)中:()兩種大樹(shù)各成活1株的概率;()成活的株數(shù)的分
6、布列與期望 11. 某單位為綠化環(huán)境,移栽了甲、乙兩種大樹(shù)各2株設(shè)甲、乙兩種大樹(shù)移栽的成活率分別為和,且各株大樹(shù)是否成活互不影響求移栽的4株大樹(shù)中: ()至少有1株成活的概率;()兩種大樹(shù)各成活1株的概率 12。 甲、乙兩名跳高運(yùn)動(dòng)員一次試跳米高度成功的概率分別是,且每次試跳成功與否相互之間沒(méi)有影響,求:()甲試跳三次,第三次才成功的概率;()甲、乙兩人在第一次試跳中至少有一人成功的概率;()甲、乙各試跳兩次,甲比乙的成功次數(shù)恰好多一次的概率13. 從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機(jī)抽取1件,假設(shè)事件:“取出的2件產(chǎn)品中至多有1件是二等品”的概率(1)求從該批產(chǎn)品中任取1件是二等品的
7、概率;(2)若該批產(chǎn)品共100件,從中任意抽取2件,求事件:“取出的2件產(chǎn)品中至少有一件二等品"的概率14。 某單位有三輛汽車(chē)參加某種事故保險(xiǎn),單位年初向保險(xiǎn)公司繳納每輛 元的保險(xiǎn)金,對(duì)在一年內(nèi)發(fā)生此種事故的每輛汽車(chē),單位可獲元的賠償(假設(shè)每輛車(chē)最多只賠償一次),設(shè)這三輛車(chē)在一年內(nèi)發(fā)生此種事故的概率分別為,且各車(chē)是否發(fā)生事故相互獨(dú)立,求一年內(nèi)該單位在此保險(xiǎn)中:()獲賠的概率;()獲賠金額的分布列與期望15。 某公司招聘員工,指定三門(mén)考試課程,有兩種考試方案.方案一:考試三門(mén)課程,至少有兩門(mén)及格為考試通過(guò);方案二:在三門(mén)課程中,隨機(jī)選取兩門(mén),這兩門(mén)都及格為考試通過(guò)。假設(shè)某應(yīng)聘者對(duì)三門(mén)指
8、定課程考試及格的概率分別是0。5,0。6,0.9,且三門(mén)課程考試是否及格相互之間沒(méi)有影響.求:()該應(yīng)聘者用方案一考試通過(guò)的概率;()該應(yīng)聘者用方案二考試通過(guò)的概率.16. 某批產(chǎn)品成箱包裝,每箱5件一用戶(hù)在購(gòu)進(jìn)該批產(chǎn)品前先取出3箱,再?gòu)拿肯渲腥我獬槿?件產(chǎn)品進(jìn)行檢驗(yàn)設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品()用表示抽檢的6件產(chǎn)品中二等品的件數(shù),求的分布列及的數(shù)學(xué)期望;()若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶(hù)就拒絕購(gòu)買(mǎi)這批產(chǎn)品,求這批產(chǎn)品級(jí)用戶(hù)拒絕的概率17. 某工廠在試驗(yàn)階段大量生產(chǎn)一種零件這種零件有、兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響若
9、項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為,有且僅有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品()求一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率;()任意依次抽出個(gè)零件進(jìn)行檢測(cè),求其中至多個(gè)零件是合格品的概率;()任意依次抽取該種零件個(gè),設(shè)表示其中合格品的個(gè)數(shù),求與18. 將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),求:(1)兩數(shù)之和為5的概率;(2)兩數(shù)中至少有一個(gè)奇數(shù)的概率;(3)以第一次向上點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y的點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率19。 在某社區(qū)舉辦的2008奧運(yùn)知識(shí)有獎(jiǎng)問(wèn)答比賽中,甲、乙、丙三人同時(shí)回答一道有關(guān)奧運(yùn)知識(shí)的問(wèn)題,已知甲回答對(duì)這道題的
10、概率是,甲、丙兩人都回答錯(cuò)的概率是,乙、丙兩人都回答對(duì)的概率是 ()求乙、丙兩人各自回答對(duì)這道題的概率 ()求甲、乙、丙三人中恰有兩人回答對(duì)該題的概率 20. 袋中有8個(gè)顏色不同,其它都相同的球,其中1個(gè)為黑球,3個(gè)為白球,4個(gè)為紅球(1)若從袋中一次摸出2個(gè)球,求所摸出的2個(gè)球恰為異色球的概率;(2)若從袋中一次摸出3個(gè)球,且所摸得的3球中,黑球與白球的個(gè)數(shù)都沒(méi)有超過(guò)紅球的個(gè)數(shù),記此時(shí)得到紅球的個(gè)數(shù)為,求隨機(jī)變量的概率分布律,并求的數(shù)學(xué)期望和方差.21. 袋中有同樣的球個(gè),其中個(gè)紅色,個(gè)黃色,現(xiàn)從中隨機(jī)且不返回地摸球,每次摸個(gè),當(dāng)兩種顏色的球都被摸到時(shí),即停止摸球,記隨機(jī)變量為此時(shí)已摸球的次
11、數(shù),求:。(1)隨機(jī)變量的概率分布律;(2)隨機(jī)變量的數(shù)學(xué)期望與方差。(文)袋中有同樣的球個(gè),其中個(gè)紅色,個(gè)黃色,現(xiàn)從中隨機(jī)地摸球,求:(1)紅色球與黃色球恰好相等的概率(用分?jǐn)?shù)表示結(jié)果)(2)紅色球多于黃色球的不同摸法的和數(shù).22。 學(xué)習(xí)小組有6個(gè)同學(xué),其中4個(gè)同學(xué)從來(lái)沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),2個(gè)同學(xué)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)。 (1)現(xiàn)從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),求恰好選到1個(gè)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率;(2)若從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),活動(dòng)結(jié)束后,該小組沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)是一個(gè)隨機(jī)變量,求隨機(jī)變量的分布列及數(shù)
12、學(xué)期望.23. 一個(gè)袋中有大小相同的標(biāo)有1,2,3,4,5,6的6個(gè)小球,某人做如下游戲,每次從袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào)。若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得分。(1)求拿4次至少得2分的概率;(2)求拿4次所得分?jǐn)?shù)的分布列和數(shù)學(xué)期望. 24. 某研究所試制出一大批特種陶瓷刀,他們從這批產(chǎn)品中隨機(jī)抽取了50個(gè)樣本,檢測(cè)它們的硬度和耐磨度。硬度和耐磨度各分為5個(gè)檔次,檢測(cè)結(jié)果如下表。如表中所示硬度為5、耐磨度為4的刀具有3把。若在該批產(chǎn)品中任選一把刀具,其硬度記為,耐磨度記為.(1)試根據(jù)這50個(gè)樣本估計(jì)的概率是多少?且的概率是多少?(2)若從這一大批產(chǎn)品中任 意取出3把刀具,則
13、這3把刀具至少有2把的耐磨度為5的概率是多少?(3)根據(jù)這50個(gè)樣本估計(jì)的期望值。25. 為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組、有關(guān)數(shù)據(jù)見(jiàn)下表(單位:人)(I) 求x,y ;(II) 若從高校B、C抽取的人中選2人作專(zhuān)題發(fā)言,求這二人都來(lái)自高校C的概率。26. 如圖,由M到N的電路中有4個(gè)元件,分別標(biāo)為T(mén)1,T2,T3,T4,電流能通過(guò)T1,T2,T3的概率都是p,電流能通過(guò)T4的概率是0。9電流能否通過(guò)各元件相互獨(dú)立已知T1,T2,T3中至少有一個(gè)能通過(guò)電流的概率為0.999 ()求p; ()求電流能在M與N之間通過(guò)的概率; ()表示T
14、1,T2,T3,T4中能通過(guò)電流的元件個(gè)數(shù),求的期望 27. 為了解學(xué)生身高情況,某校以10的比例對(duì)全校700名學(xué)生按性別進(jìn)行出樣檢查,測(cè)得身高情況的統(tǒng)計(jì)圖如下:()估計(jì)該校男生的人數(shù);()估計(jì)該校學(xué)生身高在170185cm之間的概率;()從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185190cm之間的概率。28。 某迷宮有三個(gè)通道,進(jìn)入迷宮的每個(gè)人都要經(jīng)過(guò)一扇智能門(mén)。首次到達(dá)此門(mén),系統(tǒng)會(huì)隨機(jī)(即等可能)為你打開(kāi)一個(gè)通道,若是1號(hào)通道,則需要1小時(shí)走出迷宮;若是2號(hào)、3號(hào)通道,則分別需要2小時(shí)、3小時(shí)返回智能門(mén).再次到達(dá)智能門(mén)時(shí),系統(tǒng)會(huì)隨機(jī)打開(kāi)一個(gè)你未到過(guò)的通道,直
15、至走完迷宮為止.令表示走出迷宮所需的時(shí)間.(1) 求的分布列;(2) 求的數(shù)學(xué)期望.29. 某種有獎(jiǎng)銷(xiāo)售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購(gòu)買(mǎi)”字樣,購(gòu)買(mǎi)一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶"字樣即為中獎(jiǎng),中獎(jiǎng)概率為。甲、乙、丙三位同學(xué)每人購(gòu)買(mǎi)了一瓶該飲料。()求甲中獎(jiǎng)且乙、丙都沒(méi)有中獎(jiǎng)的概率;()求中獎(jiǎng)人數(shù)的分布列及數(shù)學(xué)期望E。30. 某射手每次射擊擊中目標(biāo)的概率是,且各次射擊的結(jié)果互不影響。()假設(shè)這名射手射擊5次,求恰有2次擊中目標(biāo)的概率()假設(shè)這名射手射擊5次,求有3次連續(xù)擊中目標(biāo).另外2次未擊中目標(biāo)的概率;()假設(shè)這名射手射擊3次,每次射擊,擊中目標(biāo)得1分,未擊中目標(biāo)得0分,在
16、3次射擊中,若有2次連續(xù)擊中,而另外1次未擊中,則額外加1分;若3次全擊中,則額外加3分,記為射手射擊3次后的總的分?jǐn)?shù),求的分布列。KS5U。COM31。 某食品廠為了檢查一條自動(dòng)包裝流水線(xiàn)的生產(chǎn)情況,隨即抽取該流水線(xiàn)上40件產(chǎn)品作為樣本算出他們的重量(單位:克)重量的分組區(qū)間為(490,,(495,,(510,,由此得到樣本的頻率分布直方圖,如圖4所示 (1)根據(jù)頻率分布直方圖,求重量超過(guò)505克的產(chǎn)品數(shù)量 (2)在上述抽取的40件產(chǎn)品中任取2件,設(shè)Y為重量超過(guò)505克的產(chǎn)品數(shù)量,求Y的分布列 (3)從流水線(xiàn)上任取5件產(chǎn)品,求恰有2件產(chǎn)品合格的重量超過(guò)505克的概率32. 某種有獎(jiǎng)銷(xiāo)售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶"或“謝謝購(gòu)買(mǎi)”字樣,購(gòu)買(mǎi)一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為.甲、乙、丙三位同學(xué)每人購(gòu)買(mǎi)了一瓶該飲料。()求三位同學(xué)都沒(méi)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國(guó)智慧商旅行業(yè)市場(chǎng)深度調(diào)研及供需與投資價(jià)值研究報(bào)告
- 2025-2030中國(guó)口服葡萄糖行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030中國(guó)中成藥行業(yè)發(fā)展分析及投資風(fēng)險(xiǎn)預(yù)測(cè)研究報(bào)告
- 藥店區(qū)域經(jīng)理培訓(xùn)課件
- 2025-2030年智能攝像機(jī)產(chǎn)業(yè)市場(chǎng)深度分析及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國(guó)轉(zhuǎn)化生長(zhǎng)因子β2行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030年中國(guó)薩爾坦人行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030年中國(guó)腦電圖(EEG)系統(tǒng)行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 上海歐華職業(yè)技術(shù)學(xué)院《化學(xué)學(xué)科教學(xué)設(shè)計(jì)與案例分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川衛(wèi)生康復(fù)職業(yè)學(xué)院《測(cè)試技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 招投標(biāo)相關(guān)知識(shí)培訓(xùn)課件
- 中國(guó)血脂管理指南2024版解讀課件
- 2025屆浙江省稽陽(yáng)聯(lián)誼學(xué)校高三下學(xué)期4月二模政治試題 含解析
- 2025年北京市東城區(qū)九年級(jí)初三一模英語(yǔ)試卷(含答案)
- 2025年北京市東城區(qū)高三二模數(shù)學(xué)試卷(含答案)
- 首醫(yī)口腔面試真題及答案
- 門(mén)診病歷基本書(shū)寫(xiě)規(guī)范
- 住宅區(qū)和住宅建筑內(nèi)光纖到戶(hù)通信設(shè)施工程設(shè)計(jì)規(guī)范
- 景區(qū)衛(wèi)生培訓(xùn)課件
- 七年級(jí)下冊(cè)《山地回憶》課件
- 《房顫心律失常的護(hù)理》課件
評(píng)論
0/150
提交評(píng)論