最全的遞推數(shù)列求通項公式方法24頁_第1頁
最全的遞推數(shù)列求通項公式方法24頁_第2頁
最全的遞推數(shù)列求通項公式方法24頁_第3頁
最全的遞推數(shù)列求通項公式方法24頁_第4頁
最全的遞推數(shù)列求通項公式方法24頁_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高考遞推數(shù)列題型分類歸納解析 各種數(shù)列問題在很多情形下,就是對數(shù)列通項公式的求解。特別是在一些綜合性比較強的數(shù)列問題中,數(shù)列通項公式的求解問題往往是解決數(shù)列難題的瓶頸。本文總結(jié)出幾種求解數(shù)列通項公式的方法,希望能對大家有幫助。類型1 解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例:已知數(shù)列滿足,求。解:由條件知:分別令,代入上式得個等式累加之,即所以,變式:(2004,全國I,個理22本小題滿分14分)已知數(shù)列,且a2k=a2k1+(1)k, a2k+1=a2k+3k, 其中k=1,2,3,.(I)求a3, a5;(II)求 an的通項公式.解:,即, 將以上k個式子相加,得將代入

2、,得,。經(jīng)檢驗也適合,類型2 解法:把原遞推公式轉(zhuǎn)化為,利用累乘法(逐商相乘法)求解。例:已知數(shù)列滿足,求。解:由條件知,分別令,代入上式得個等式累乘之,即又,例:已知, ,求。解: 。變式:(2004,全國I,理15)已知數(shù)列an,滿足a1=1, (n2),則an的通項 解:由已知,得,用此式減去已知式,得當(dāng)時,即,又,將以上n個式子相乘,得類型3 (其中p,q均為常數(shù),)。解法(待定系數(shù)法):把原遞推公式轉(zhuǎn)化為:,其中,再利用換元法轉(zhuǎn)化為等比數(shù)列求解。例:已知數(shù)列中,求.解:設(shè)遞推公式可以轉(zhuǎn)化為即.故遞推公式為,令,則,且.所以是以為首項,2為公比的等比數(shù)列,則,所以.變式:(2006,重

3、慶,文,14)在數(shù)列中,若,則該數(shù)列的通項_(key:)變式:(2006. 福建.理22.本小題滿分14分)已知數(shù)列滿足(I)求數(shù)列的通項公式;(II)若數(shù)列bn滿足證明:數(shù)列bn是等差數(shù)列;()證明:(I)解:是以為首項,2為公比的等比數(shù)列 即(II)證法一:,得即,得即是等差數(shù)列 證法二:同證法一,得令得設(shè)下面用數(shù)學(xué)歸納法證明(1)當(dāng)時,等式成立 (2)假設(shè)當(dāng)時,那么這就是說,當(dāng)時,等式也成立 根據(jù)(1)和(2),可知對任何都成立 是等差數(shù)列 (III)證明:變式:遞推式:。解法:只需構(gòu)造數(shù)列,消去帶來的差異類型4 (其中p,q均為常數(shù),)。 (或,其中p,q, r均為常數(shù)) 。解法:一般

4、地,要先在原遞推公式兩邊同除以,得:引入輔助數(shù)列(其中),得:再待定系數(shù)法解決。例:已知數(shù)列中,,,求。解:在兩邊乘以得:令,則,解之得:所以變式:(2006,全國I,理22,本小題滿分12分)設(shè)數(shù)列的前項的和,()求首項與通項;()設(shè),證明:解:(I)當(dāng)時,;當(dāng)時,即,利用(其中p,q均為常數(shù),)。 (或,其中p,q, r均為常數(shù))的方法,解之得:()將代入得 Sn= ×(4n2n)×2n+1 + = ×(2n+11)(2n+12) = ×(2n+11)(2n1) Tn= = × = ×( )所以, = ) = ×( )

5、< 類型5 遞推公式為(其中p,q均為常數(shù))。解法一(待定系數(shù)法):先把原遞推公式轉(zhuǎn)化為其中s,t滿足解法二(特征根法):對于由遞推公式,給出的數(shù)列,方程,叫做數(shù)列的特征方程。若是特征方程的兩個根,當(dāng)時,數(shù)列的通項為,其中A,B由決定(即把和,代入,得到關(guān)于A、B的方程組);當(dāng)時,數(shù)列的通項為,其中A,B由決定(即把和,代入,得到關(guān)于A、B的方程組)。解法一(待定系數(shù)迭加法):數(shù)列:, ,求數(shù)列的通項公式。由,得,且。則數(shù)列是以為首項,為公比的等比數(shù)列,于是。把代入,得,。把以上各式相加,得。解法二(特征根法):數(shù)列:, 的特征方程是:。,。又由,于是故例:已知數(shù)列中,,,求。解:由可轉(zhuǎn)

6、化為即或這里不妨選用(當(dāng)然也可選用,大家可以試一試),則是以首項為,公比為的等比數(shù)列,所以,應(yīng)用類型1的方法,分別令,代入上式得個等式累加之,即又,所以。變式:(2006,福建,文,22,本小題滿分14分)已知數(shù)列滿足(I)證明:數(shù)列是等比數(shù)列;(II)求數(shù)列的通項公式;(III)若數(shù)列滿足證明是等差數(shù)列 (I)證明:是以為首項,2為公比的等比數(shù)列 (II)解:由(I)得(III)證明:,得即,得即是等差數(shù)列 類型6 遞推公式為與的關(guān)系式。(或)解法:這種類型一般利用與消去 或與消去進行求解。例:已知數(shù)列前n項和.(1)求與的關(guān)系;(2)求通項公式.解:(1)由得:于是所以.(2)應(yīng)用類型4(

7、其中p,q均為常數(shù),)的方法,上式兩邊同乘以得:由.于是數(shù)列是以2為首項,2為公差的等差數(shù)列,所以變式:(2006,陜西,理,20本小題滿分12分) 已知正項數(shù)列an,其前n項和Sn滿足10Sn=an2+5an+6且a1,a3,a15成等比數(shù)列,求數(shù)列an的通項an 解: 10Sn=an2+5an+6, 10a1=a12+5a1+6,解之得a1=2或a1=3 又10Sn1=an12+5an1+6(n2), 由得 10an=(an2an12)+6(anan1),即(an+an1)(anan15)=0 an+an1>0 , anan1=5 (n2) 當(dāng)a1=3時,a3=13,a15=73 a

8、1, a3,a15不成等比數(shù)列a13;當(dāng)a1=2時, a3=12, a15=72, 有 a32=a1a15 , a1=2, an=5n3 變式: (2005,江西,文,22本小題滿分14分)已知數(shù)列an的前n項和Sn滿足SnSn2=3求數(shù)列an的通項公式.解:,兩邊同乘以,可得令 又,。類型7 解法:這種類型一般利用待定系數(shù)法構(gòu)造等比數(shù)列,即令,與已知遞推式比較,解出,從而轉(zhuǎn)化為是公比為的等比數(shù)列。例:設(shè)數(shù)列:,求.解:設(shè),將代入遞推式,得()則,又,故代入()得說明:(1)若為的二次式,則可設(shè);(2)本題也可由 ,()兩式相減得轉(zhuǎn)化為求之.變式:(2006,山東,文,22,本小題滿分14分)

9、已知數(shù)列中,在直線y=x上,其中n=1,2,3 ()令()求數(shù)列()設(shè)的前n項和,是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出 若不存在,則說明理由 解:(I)由已知得 又是以為首項,以為公比的等比數(shù)列 (II)由(I)知,將以上各式相加得: (III)解法一:存在,使數(shù)列是等差數(shù)列 數(shù)列是等差數(shù)列的充要條件是、是常數(shù)即又當(dāng)且僅當(dāng),即時,數(shù)列為等差數(shù)列 解法二:存在,使數(shù)列是等差數(shù)列 由(I)、(II)知,又當(dāng)且僅當(dāng)時,數(shù)列是等差數(shù)列 類型8 解法:這種類型一般是等式兩邊取對數(shù)后轉(zhuǎn)化為,再利用待定系數(shù)法求解。例:已知數(shù)列中,求數(shù)列解:由兩邊取對數(shù)得,令,則,再利用待定系數(shù)法解得:。變式:(

10、2005,江西,理,21本小題滿分12分)已知數(shù)列(1)證明(2)求數(shù)列的通項公式an.解:用數(shù)學(xué)歸納法并結(jié)合函數(shù)的單調(diào)性證明:(1)方法一 用數(shù)學(xué)歸納法證明:1°當(dāng)n=1時, ,命題正確.2°假設(shè)n=k時有 則 而又時命題正確.由1°、2°知,對一切nN時有方法二:用數(shù)學(xué)歸納法證明:1°當(dāng)n=1時,; 2°假設(shè)n=k時有成立, 令,在0,2上單調(diào)遞增,所以由假設(shè)有:即也即當(dāng)n=k+1時 成立,所以對一切 (2)解法一:所以,又bn=1,所以解法二:由(I)知,兩邊取以2為底的對數(shù),令,則或變式:(2006,山東,理,22,本小題滿分

11、14分)已知a1=2,點(an,an+1)在函數(shù)f(x)=x2+2x的圖象上,其中=1,2,3,(1) 證明數(shù)列l(wèi)g(1+an)是等比數(shù)列;(2) 設(shè)Tn=(1+a1) (1+a2) (1+an),求Tn及數(shù)列an的通項;記bn=,求bn數(shù)列的前項和Sn,并證明Sn+=1 解:()由已知,兩邊取對數(shù)得,即是公比為2的等比數(shù)列 ()由()知 (*)=由(*)式得(), ,又,又, 類型9 解法:這種類型一般是等式兩邊取倒數(shù)后換元轉(zhuǎn)化為。例:已知數(shù)列an滿足:,求數(shù)列an的通項公式。解:取倒數(shù):是等差數(shù)列,變式:(2006,江西,理,22,本大題滿分14分)已知數(shù)列an滿足:a1,且an(1) 求

12、數(shù)列an的通項公式;(2) 證明:對于一切正整數(shù)n,不等式a1·a2·an<2·n!解:(1)將條件變?yōu)椋?,因此1為一個等比數(shù)列,其首項為1,公比,從而1,據(jù)此得an(n³1)1°(2)證:據(jù)1°得,a1·a2·an為證a1·a2·an<2·n!只要證nÎN*時有>2°顯然,左端每個因式都是正數(shù),先證明,對每個nÎN*,有³1()3°用數(shù)學(xué)歸納法證明3°式:(i) n1時,3°式顯然成立,(ii)

13、 設(shè)nk時,3°式成立,即³1()則當(dāng)nk1時,³1()·()1()()³1()即當(dāng)nk1時,3°式也成立 故對一切nÎN*,3°式都成立 利用3°得,³1()11>故2°式成立,從而結(jié)論成立 類型10 解法:如果數(shù)列滿足下列條件:已知的值且對于,都有(其中p、q、r、h均為常數(shù),且),那么,可作特征方程,當(dāng)特征方程有且僅有一根時,則是等差數(shù)列;當(dāng)特征方程有兩個相異的根、時,則是等比數(shù)列。例:已知數(shù)列滿足性質(zhì):對于且求的通項公式. 解: 數(shù)列的特征方程為變形得其根為故特征方程有兩

14、個相異的根,使用定理2的第(2)部分,則有即例:已知數(shù)列滿足:對于都有(1)若求(2)若求(3)若求(4)當(dāng)取哪些值時,無窮數(shù)列不存在?解:作特征方程變形得特征方程有兩個相同的特征根依定理2的第(1)部分解答.(1)對于都有(2) 令,得.故數(shù)列從第5項開始都不存在,當(dāng)4,時,.(3)令則對于(4)、顯然當(dāng)時,數(shù)列從第2項開始便不存在.由本題的第(1)小題的解答過程知,時,數(shù)列是存在的,當(dāng)時,則有令則得且2.當(dāng)(其中且N2)時,數(shù)列從第項開始便不存在.于是知:當(dāng)在集合或且2上取值時,無窮數(shù)列都不存在.變式:(2005,重慶,文,22,本小題滿分12分)數(shù)列記()求b1、b2、b3、b4的值;(

15、)求數(shù)列的通項公式及數(shù)列的前n項和解法一:由已知,得,其特征方程為解之得,或, 解法二:(I)(II)因,故猜想因,(否則將代入遞推公式會導(dǎo)致矛盾)故的等比數(shù)列., 解法三:()由整理得()由所以解法四:()同解法一() 從而類型11 或解法:這種類型一般可轉(zhuǎn)化為與是等差或等比數(shù)列求解。例:(I)在數(shù)列中,求 (II)在數(shù)列中,求類型12 歸納猜想法解法:數(shù)學(xué)歸納法變式:(2006,全國II,理,22,本小題滿分12分)設(shè)數(shù)列an的前n項和為Sn,且方程x2anxan0有一根為Sn1,n1,2,3,()求a1,a2;()an的通項公式 提示:1 為方程的根,代入方程可得將n=1和n=2代入上式

16、可得 2 求出等,可猜想并用數(shù)學(xué)歸納法進行證明,本題主要考察 一般數(shù)列的通項公式與求和公式間的關(guān)系3 方程的根的意義(根代入方程成立)4數(shù)學(xué)歸納法證明數(shù)列的通項公式(也可以把分開為,可得解:()當(dāng)n1時,x2a1xa10有一根為S11a11,于是(a11)2a1(a11)a10,解得a1 當(dāng)n2時,x2a2xa20有一根為S21a2,于是(a2)2a2(a2)a20,解得a1 ()由題設(shè)(Sn1)2an(Sn1)an0,即Sn22Sn1anSn0 當(dāng)n2時,anSnSn1,代入上式得Sn1Sn2Sn10由()知S1a1,S2a1a2 由可得S3 由此猜想Sn,n1,2,3, 8分下面用數(shù)學(xué)歸納法證明這個結(jié)論 (i)n1時已知結(jié)論成立 (ii)假設(shè)nk時結(jié)論成立,即Sk,當(dāng)nk1時,由得Sk1,即Sk1,故nk1時結(jié)論也成立 綜上,由(i)、(ii)可知Sn對所有正整數(shù)n都成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論