高一數(shù)學(xué)《112余弦定理(二)》_第1頁
高一數(shù)學(xué)《112余弦定理(二)》_第2頁
高一數(shù)學(xué)《112余弦定理(二)》_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、1.1.2余弦定理(二)一、教學(xué)目標(biāo)1知識(shí)與技能:掌握在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無解等情形;三角形各種類型的判定方法;三角形面積定理的應(yīng)用。2. 過程與方法:通過引導(dǎo)學(xué)生分析,解答三個(gè)典型例子,使學(xué)生學(xué)會(huì)綜合運(yùn)用正、余弦定理,三角函數(shù)公式及三角形有關(guān)性質(zhì)求解三角形問題。3.情態(tài)與價(jià)值:通過正、余弦定理,在解三角形問題時(shí)溝通了三角形的有關(guān)性質(zhì)和三角函數(shù)的關(guān)系,反映了事物之間的必然聯(lián)系及一定條件下相互轉(zhuǎn)化的可能,從而從本質(zhì)上反映了事物之間的內(nèi)在聯(lián)系。二、教學(xué)重、難點(diǎn)重點(diǎn):在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無解等情形;三角形各種類型的判定方

2、法;三角形面積定理的應(yīng)用。難點(diǎn):正、余弦定理與三角形的有關(guān)性質(zhì)的綜合運(yùn)用。四、教學(xué)設(shè)想復(fù)習(xí)引入 余弦定理及基本作用 已知三角形的任意兩邊及它們的夾角就可以求出第三邊 已知三角形的三條邊就可以求出其它角。 練習(xí)1。教材P8面第2題2在ABC中,若,求角A(答案:A=120)思考。解三角形問題可以分為幾種類型?分別怎樣求解的?求解三角形一定要知道一邊嗎? (1)已知三角形的任意兩邊與其中一邊的對(duì)角; 例如 (先由正弦定理求B,由三角形內(nèi)角和求C,再由正、余弦定理求C邊)(2)已知三角形的任意兩角及其一邊; 例如 (先由三角形內(nèi)角和求角C,正弦定理求a、b)(3)已知三角形的任意兩邊及它們的夾角;

3、例如 (先由余弦定理求C邊,再由正、余弦定理求角A、B)(4)已知三角形的三條邊。 例如 (先由余弦定理求最大邊所對(duì)的角) 探索研究例1在中,已知下列條件解三角形(1),(一解) (2),(一解)(3),(二解) (4),(一解)(5),(無解)分析:先由可進(jìn)一步求出B;則 從而歸納:(1)如果已知的A是直角或鈍角,ab,只有一解; (2)如果已知的A是銳角,ab,或a=b,只有一解; (3)如果已知的A是銳角,ab,1、,有二解;2、,只有一解;3、,無解。評(píng)述:注意在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),只有當(dāng)A為銳角且時(shí),有兩解;其它情況時(shí)則只有一解或無解。隨堂練習(xí)1(1)在ABC

4、中,已知,試判斷此三角形的解的情況。(2)在ABC中,若,則符合題意的b的值有_個(gè)。(3)在ABC中,如果利用正弦定理解三角形有兩解,求x的取值范圍。( 答案:(1)有兩解;(2)0;(3)例2在ABC中,已知,判斷ABC的類型。分析:由余弦定理可知 解:,即, 。隨堂練習(xí)2(1)在ABC中,已知,判斷ABC的類型。 (2)已知ABC滿足條件,判斷ABC的類型。 (答案:(1);(2)ABC是等腰或直角三角形)例3在ABC中,面積為,求的值分析:可利用三角形面積定理以及正弦定理解:由得, 則=3,即,從而隨堂練習(xí)3(1)在ABC中,若,且此三角形的面積,求角C(2)在ABC中,其三邊分別為a、b、c,且三角形的面積,求角C(答案:(1)或;(2)課堂小結(jié)(1)在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無解等情形;(2)三角形各種類型的判定方法;(3)三角形面積定理的應(yīng)用。五、作業(yè)(課時(shí)作業(yè))(1)在ABC中,已知,試判斷此三角形的解的情況。(2)設(shè)x、x+1、x+2是鈍角三角形的三邊長,求實(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論