2020學(xué)年四川省南充市高考一模數(shù)學(xué)_第1頁(yè)
2020學(xué)年四川省南充市高考一模數(shù)學(xué)_第2頁(yè)
2020學(xué)年四川省南充市高考一模數(shù)學(xué)_第3頁(yè)
2020學(xué)年四川省南充市高考一模數(shù)學(xué)_第4頁(yè)
2020學(xué)年四川省南充市高考一模數(shù)學(xué)_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2020年四川省南充市高考一模數(shù)學(xué)一、選擇題:本大題共10小題,每題5分,共50分,在每個(gè)小題給出的四個(gè)選項(xiàng)在,只有一項(xiàng)是符合題目要求的.1. 設(shè)集合A=x|1x4,集合B=x|(x-3)(x+1)0,則AB=()A.x|-1x4 B.x|-1x1 C.x|1x3 D.x|-1x3 解析:集合A=x|1x4,集合B=x|(x-3)(x+1)0=x|-1x3,AB=x|1x3.答案:C.2. 設(shè)i是虛數(shù)單位,則復(fù)數(shù)=()A.1+i B.1-i C.-1-i D.-1+i 解析:復(fù)數(shù)=i(1+i)=-1+i.答案:D.3. 已知命題P:xR,ex-x-10,則P是()A.xR,ex-x-10 B.

2、x0R,-x0-10 C.x0R,-x0-10 D.xR,ex-x-10 解析:因?yàn)槿Q(chēng)命題的否定是特稱(chēng)命題,所以,命題P:xR,ex-x-10,則P是x0R,-x0-10.答案:B.4. 下列函數(shù)中,滿(mǎn)足“f(xy)=f(x)+f(y)”的單調(diào)遞減函數(shù)是()A.f(x)=lnx B.f(x)=-x3 C.f(x)=logx D.f(x)=3-x 解析:對(duì)數(shù)函數(shù)符合條件f(xy)=f(x)+f(y),證明如下:設(shè)f(x)=logax,其中,x0,a0且a1,則f(xy)=logaxy=logax+logay=f(x)+f(y),即對(duì)數(shù)函數(shù)f(x)=logax,符合條件f(xy)=f(x)+f(

3、y),同時(shí),f(x)單調(diào)遞減,則a(0,1),綜合以上分析,對(duì)數(shù)函數(shù)f(x)=logx符合題意,答案:C.5. 如圖的程序圖的算法思路中是一種古老而有效的算法-輾轉(zhuǎn)相除法,執(zhí)行改程序框圖,若輸入的m,n的值分別為30,42,則輸出的m=()A.0 B.2 C.3 D.6 解析:模擬程序框圖的運(yùn)行過(guò)程,如下;m=30,n=42,30÷42=0,余數(shù)是30,r=30,m=42,n=30,不滿(mǎn)足條件r=0,42÷30=1,余數(shù)是12,r=12,m=30,n=12,不滿(mǎn)足條件r=0,30÷12=2,余數(shù)是6,r=6,m=12,n=6,不滿(mǎn)足條件r=0,12÷6=

4、2,余數(shù)是0,r=0,m=6,n=0,滿(mǎn)足條件r=0,退出循環(huán),輸出m的值為6.答案:D.6. 為了得到函數(shù)y=sin4x-cos4x的圖象,可以將函數(shù)y=sin4x的圖象()A.向右平移個(gè)單位 B.向左平移個(gè)單位 C.向右平移個(gè)單位 D.向左平移個(gè)單位 解析:函數(shù)y=sin4x-cos4x=sin(4x-),sin(4x-)=sin4(x-),為了得到函數(shù)y=sin4x-cos4x的圖象,可以將函數(shù)y=sin4x的圖象向右平移個(gè)單位.答案:A.7. 某幾何體的三視圖如圖所示,則此幾何體的體積等于()A.45 B.36 C.30 D.6 解析:由三視圖可知該幾何體為長(zhǎng)方體ABCD-A1B1C1

5、D1切去一個(gè)三棱錐B1-A1BC1剩下的幾何體.V=4×3×3-××4×3×3=30.答案:C.8. 春節(jié)前,某市一過(guò)江大橋上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的6秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以6秒內(nèi)間隔閃亮,那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過(guò)3秒的概率是()A.B.C.D.解析:設(shè)兩串彩燈分別在通電后x秒,y秒第一次閃亮,則所有的可能情況對(duì)應(yīng)的平面區(qū)域?yàn)檎叫蜲ABC,作出直線(xiàn)x-y=3和直線(xiàn)y-x=3,則兩燈在第一次閃亮?xí)r刻不超過(guò)3秒對(duì)應(yīng)的平面區(qū)域?yàn)榱呅蜲DEBGF,P=.答

6、案:B.9. 已知F是拋物線(xiàn)y2=4x的焦點(diǎn),點(diǎn)A,B在該拋物線(xiàn)上且位于x軸的兩側(cè),OAOB(其中O為坐標(biāo)原點(diǎn)),則AOB與AOF面積之和的最小值是()A.16 B.8C.8D.18 解析:設(shè)直線(xiàn)AB的方程為:x=ty+m,點(diǎn)A(x1,y1),B(x2,y2),直線(xiàn)AB與x軸的交點(diǎn)為M(m,0),x=ty+m代入y2=4x,可得y2-4ty-4m=0,根據(jù)韋達(dá)定理有y1·y2=-4m,OAOB,=0,x1·x2+y1·y2=0,從而(y1·y2)2+y1·y2=0,點(diǎn)A,B位于x軸的兩側(cè),y1·y2=-16,故m=4.不妨令點(diǎn)A在x軸

7、上方,則y10,又F(1,0),SABO+SAFO=×4×(y1-y2)+×y1=y1+ 8,當(dāng)且僅當(dāng)y1=,即y1=時(shí),取“=”號(hào),ABO與AFO面積之和的最小值是8.答案:C.10. 函數(shù)f(x)是奇函數(shù)f(x)(xR)的導(dǎo)函數(shù),f(1)=0,當(dāng)x0時(shí),xf(x)+f(x)0,則使得f(x)0成立的x的取值范圍是()A.(-,-1)(0,1) B.(-1,0)(1,+) C.(-,-1)(1,+) D.(-1,0)(0,1) 解析:設(shè)g(x)=xf(x),則g(x)=xf(x)+f(x),當(dāng)x0時(shí),xf(x)+f(x)0,則當(dāng)x0時(shí),g(x)0,函數(shù)g(x)=

8、xf(x)在(-,0)上為增函數(shù),函數(shù)f(x)是奇函數(shù),g(-x)=(-x)f(-x)=(-x)-f(x)=xf(x)=g(x),函數(shù)g(x)為定義域上的偶函數(shù),由f(1)=0得,g(1)=0,函數(shù)g(x)的圖象大致如右圖:不等式f(x)00,或,由函數(shù)的圖象得,-1x0或x1,使得f(x)0成立的x的取值范圍是:(-1,0)(1,+).答案:B.二、填空題:本大題共5小題,每小題5分,共25分.11. 在(3-x)5的展開(kāi)式中,含x3的項(xiàng)的系數(shù)是_(用數(shù)字作答)解析:(3-x)5的展開(kāi)式中,通項(xiàng)公式是Tr+1=C5r ·35-r·(-1)r·xr,令r=3,得含

9、x3的項(xiàng)的系數(shù)是C53 ·32·(-1)3=-90.答案:-90.12. 已知(0,),(0,),且cos=,cos(+)=-,則sin=_.解析:已知(0,),(0,),且cos=,cos(+)=-,sin=,sin(+)=,則sin=sin(+)-=sin(+)cos-cos(+)sin=·-(-)·=.答案:.13. 已知實(shí)數(shù)x,y滿(mǎn)足,則x2+y2的最大值為_(kāi).解析:先根據(jù)約束條件畫(huà)出可行域,而z=x2+y2,表示可行域內(nèi)點(diǎn)到原點(diǎn)距離OP的平方,點(diǎn)P在黃色區(qū)域里運(yùn)動(dòng)時(shí),點(diǎn)P跑到點(diǎn)C時(shí)OP最大當(dāng)在點(diǎn)C(2,3)時(shí),z最大,最大值為22+32=13.

10、答案:1314.設(shè)四邊形ABCD為平行四邊形,|=8,|=3,若點(diǎn)M,N滿(mǎn)足,則=_.解析:, ,.答案:9.15. 設(shè)S為復(fù)數(shù)集C的非空子集.如果(1)S含有一個(gè)不等于0的數(shù);(2)a,bS,a+b,a-b,abS;(3)a,bS,且b0,S,那么就稱(chēng)S是一個(gè)數(shù)域.現(xiàn)有如下命題:如果S是一個(gè)數(shù)域,則0,1S;如果S是一個(gè)數(shù)域,那么S含有無(wú)限多個(gè)數(shù);復(fù)數(shù)集是數(shù)域;S=a+b|a,bQ,是數(shù)域;S=a+bi|a,bZ是數(shù)域.其中是真命題的有_(寫(xiě)出所有真命題的序號(hào)).解析:由已知中(1)S含有一個(gè)不等于0的數(shù);(2)a,bS,a+b,a-b,abS;(3)a,bS,且b0,S,那么就稱(chēng)S是一個(gè)數(shù)

11、域.令a=b0,則a-b=0S;=1S,故正確;naS,nZ,故正確;復(fù)數(shù)集C滿(mǎn)足3個(gè)條件,故復(fù)數(shù)集是數(shù)域,故正確;S=a+b|a,bQ,滿(mǎn)足3個(gè)條件,故S是數(shù)域,故正確;S=a+bi|a,bZ不滿(mǎn)足條件(3),故S不是數(shù)域,故錯(cuò)誤;答案:三、解答題:本大題共6小題,共75分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.16. 已知數(shù)列an滿(mǎn)足a1=1,an+1=2an+1.(1)求數(shù)列an的通項(xiàng)公式;(2)令bn=n(an+1),求數(shù)列bn的前n項(xiàng)和Tn.解析:(1)通過(guò)對(duì)an+1=2an+1變形可知an+1+1=2(an+1),進(jìn)而可知數(shù)列an+1是首項(xiàng)、公比均為2的等比數(shù)列,計(jì)算即得結(jié)論;(

12、2)通過(guò)(1)可知bn=n·2n-1,進(jìn)而利用錯(cuò)位相減法計(jì)算即得結(jié)論.答案:(1)an+1=2an+1,an+1+1=2(an+1),又a1=1,數(shù)列an+1是首項(xiàng)、公比均為2的等比數(shù)列,an+1=2n,an=-1+2n;(2)由(1)可知bn=n(an+1)=n·2n=n·2n-1,Tn=1·20+2·2+n·2n-1,2Tn=1·2+2·22+(n-1)·2n-1+n·2n,錯(cuò)位相減得:-Tn=1+2+22+2n-1-n·2n=-n·2n=-1-(n-1)·2n

13、,于是Tn=1+(n-1)·2n.17. 某高校文學(xué)院和理學(xué)院的學(xué)生組隊(duì)參加大學(xué)生電視辯論賽,文學(xué)院推薦了2名男生,3名女生,理學(xué)院推薦了4名男生,3名女生,文學(xué)院和理學(xué)院所推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后學(xué)生水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì).(1)求文學(xué)院至少有一名學(xué)生入選代表隊(duì)的概率;(2)某場(chǎng)比賽前,從代表隊(duì)的6名學(xué)生在隨機(jī)抽取4名參賽,記X表示參賽的男生人數(shù),求X的分布列與數(shù)學(xué)期望.解析:(1)求出文學(xué)院至少有一名學(xué)生入選代表隊(duì)的對(duì)立事件的概率,然后求解概率即可;(2)求出X表示參賽的男生人數(shù)的可能值,求出概率,得到X的分布列,然后求解

14、數(shù)學(xué)期望.答案:(1)由題意,參加集訓(xùn)的男、女學(xué)生共有6人,參賽學(xué)生全從理學(xué)院中抽出(等價(jià)于文學(xué)院中沒(méi)有學(xué)生入選代表隊(duì))的概率為:,因此文學(xué)院至少有一名學(xué)生入選代表隊(duì)的概率為:;(2)某場(chǎng)比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,X表示參賽的男生人數(shù),則X的可能取值為:1,2,3,P(X=1)=,P(X=2)=,P(X=3)=.X的分布列:和數(shù)學(xué)期望EX=1×+2×+3×=2.18. 已知函數(shù)f(x)=sinx(sinx+cosx).(1)求f(x)的最小正周期和最大值;(2)在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f()=1,a=2,求三

15、角形ABC面積的最大值.解析:(1)利用二倍角公式化簡(jiǎn)f(x);(2)求出A,根據(jù)余弦定理和基本不等式得出bc的最大值,代入面積公式即可.答案:(1)f(x)=sin2x+sinxcosx=-cos2x+sin2x=sin(2x-)+.f(x)的最小正周期T=,f(x)的最大值是.(2)f()=sin(A-)+=1,sin(A-)=,A=.a2=b2+c2-2bccosA,12=b2+c2-bc,b2+c2=12+bc2bc,bc12.S=bcsinA=bc3.三角形ABC面積的最大值是3.19. 如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SD=DC=2AD,側(cè)棱SD底面ABCD,點(diǎn)E

16、是SC的中點(diǎn),點(diǎn)F在SB上,且EFSB.(1)求證:SA平面BDE;(2)求證SB平面DEF;(3)求二面角C-SB-D的余弦值.解析:(1)連接AC交BD于點(diǎn)O,連接OE.然后利用三角形中位線(xiàn)的性質(zhì)可得OESA,再由線(xiàn)面平行的判定定理證得SA平面BDE;(2)由SD=DC,E是SC的中點(diǎn)可得DESC,再由面面垂直的判定和性質(zhì)得到BC平面SDC,從而得到BCDE,進(jìn)一步得到SBDE,結(jié)合已知EFSB,由線(xiàn)面垂直的判定得結(jié)論;(3)根據(jù)二面角的定義得到EFD是二面角C-SB-D的平面角,根據(jù)三角形的邊角關(guān)系進(jìn)行求解即可.答案:(1)證明:如圖,連接AC交BD于點(diǎn)O,連接OE.點(diǎn)O、E分別為AC、

17、SC的中點(diǎn),OESA,又OE?平面BDE,SA平面BDE,SA平面BDE;(2)證明:SD=DC,E是SC的中點(diǎn),DESC,又SD底面ABCD,平面SDC平面ABCD,底面ABCD是矩形,BC平面SDC,BCDE,又SCBC=C,DE平面SBC,又SB平面SBC,SBDE,又EFSB,EFED=E,SB平面EFD;(3)EFSB,SB平面EFD,EFD是二面角C-SB-D的平面角,設(shè)AD=1,則SD=CD=2,則SC=2,SB=3,BD=,DE=,在三角形SDB中,SB?DF=SD?BD,即DF=,在三角形SBC中,sinCSB=,即EF=SE=,在三角形DEF中,cosEFD=,即二面角C-

18、SB-D的余弦值是.20. 已知圓F1:(x+1)2+y2=1,圓F2:(x-1)2+y2=25,動(dòng)圓P與圓F1外切并且與圓F2內(nèi)切,動(dòng)圓圓心P的軌跡為曲線(xiàn)C.()求曲線(xiàn)C的方程;()若曲線(xiàn)C與x軸的交點(diǎn)為A1,A2,點(diǎn)M是曲線(xiàn)C上異于點(diǎn)A1,A2的點(diǎn),直線(xiàn)A1M與A2M的斜率分別為k1,k2,求k1k2的值.()過(guò)點(diǎn)(2,0)作直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),在曲線(xiàn)C上是否存在點(diǎn)N,使?若存在,請(qǐng)求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.解析:()通過(guò)設(shè)P(x,y)、動(dòng)圓P的比較為r,利用圓與圓的位置關(guān)系可知|PF1|=1+r、|PF2|=5-r,進(jìn)而化簡(jiǎn)可知?jiǎng)訄A圓心P的軌跡是以F1(-1,0)

19、、F2(1,0)為焦點(diǎn)、長(zhǎng)軸長(zhǎng)為6的橢圓,計(jì)算即得結(jié)論;()通過(guò)()可知A1(-3,0)、A2(3,0),通過(guò)設(shè)M(x,y),利用及k1k2= 化簡(jiǎn)計(jì)算即得結(jié)論;()通過(guò)設(shè)過(guò)點(diǎn)(2,0)的直線(xiàn)l方程為x=my+2,并與曲線(xiàn)C方程聯(lián)立,利用韋達(dá)定理及N(x1+x2,y1+y2)在曲線(xiàn)C上化簡(jiǎn)計(jì)算即得結(jié)論.答案:()依題意,F(xiàn)1(-1,0),F(xiàn)2(1,0),設(shè)P(x,y),動(dòng)圓P的比較為r,則|PF1|=1+r,|PF2|=5-r,|PF1|+|PF2|=6,動(dòng)圓圓心P的軌跡是以F1(-1,0)、F2(1,0)為焦點(diǎn),長(zhǎng)軸長(zhǎng)為6的橢圓,則b2=a2-c2=9-1=8,于是曲線(xiàn)C的方程為:;()由()可知A1(-3,0),A2(3,0),設(shè)M(x,y),則,于是k1k2=;()結(jié)論:在曲線(xiàn)C上存在點(diǎn)N,使,且直線(xiàn)l方程為x=±y+2.理由如下:設(shè)過(guò)點(diǎn)(2,0)的直線(xiàn)l方程為:x=my+2,聯(lián)立直線(xiàn)l與曲線(xiàn)C的方程,消去x,整理得:(9+8m2)y2+32my-40=0,設(shè)A(x1,y1),B(x2,y2),則y1+y2=,y1y2=,N(x1+x2,y1+y2)在曲線(xiàn)C上,又x1+x2=m(y1+y2)+4=4-=,·( )2+·()2=1,整理得:9+8m2=16,解得:m=±,于是在曲線(xiàn)C上存在點(diǎn)N,使,且直線(xiàn)l方程為x=±

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論