--高二數(shù)學(xué)知識點總結(jié)最--5篇分享(精選)_第1頁
--高二數(shù)學(xué)知識點總結(jié)最--5篇分享(精選)_第2頁
--高二數(shù)學(xué)知識點總結(jié)最--5篇分享(精選)_第3頁
--高二數(shù)學(xué)知識點總結(jié)最--5篇分享(精選)_第4頁
--高二數(shù)學(xué)知識點總結(jié)最--5篇分享(精選)_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、高二數(shù)學(xué)知識點總結(jié)最新5篇分享高二這一年,是成績分化的分水嶺,成績會形成兩極分化:行則扶搖直上,不行則每況愈下。下面就是松鼠給大家?guī)淼母叨?shù)學(xué)知識點總結(jié),希望能幫助到大家!高二數(shù)學(xué)知識點總結(jié)1第一章:三角函數(shù)??荚嚤乜碱}。誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì)只要記住會畫圖就行,難度在于三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相,及根據(jù)最值計算A、B的值和周期,及等變化時圖像及性質(zhì)的變化,這一知識點內(nèi)容較多,需要多花時間,首先要記憶,其次要多做題強化練習(xí),只要能踏踏實實去做,也不難掌握,畢竟不存在理解上的難度。第二章:平面向量。個人覺得這一章難度較大,這也是我掌握最差的一章。向量的運算性質(zhì)及

2、三角形法則平行四邊形法則難度都不大,只要在計算的時候記住要同起點的向量。向量共線和垂直的數(shù)學(xué)表達(dá),這是計算當(dāng)中經(jīng)常要用的公式。向量的共線定理、基本定理、數(shù)量積公式。難點在于分點坐標(biāo)公式,首先要準(zhǔn)確記憶。向量在考試過程一般不會單獨出現(xiàn),常常是作為解題要用的工具出現(xiàn),用向量時要首先找出合適的向量,個人認(rèn)為這個比較難,常常找不對。有同樣情況的同學(xué)建議多看有關(guān)題的圖形。第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫之后貼在桌子上,天天都要看。而且的三角函數(shù)變換都有一定的規(guī)律,記憶的時候可以結(jié)合起來去記。除此之外,就是多練

3、習(xí)。要從多練習(xí)中找到變換的規(guī)律,比如一般都要化等等。這一章也是考試必考,所以一定要重點掌握。高二數(shù)學(xué)知識點總結(jié)2(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;()不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件出現(xiàn)的次數(shù)nA為事件出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn()A為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果

4、隨著試驗次數(shù)的增加,事件發(fā)生的頻率f(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。()頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)A與試驗總次數(shù)n的比值n,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。高二數(shù)學(xué)知識點總結(jié)(1)順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基

5、本算法結(jié)構(gòu)。順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行框所指定的操作。(2)條件結(jié)構(gòu):條件結(jié)構(gòu)是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行框或B框之一,不可能同時執(zhí)行A框和B框,也不可能框、B框都不執(zhí)行。一個判斷結(jié)構(gòu)可以有多個判斷框。(3)循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)

6、中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時,執(zhí)行A框,框執(zhí)行完畢后,再判斷條件是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件是否成立,如果仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件成立為止,此時不再執(zhí)行框,離開循環(huán)結(jié)構(gòu)。注意:1循環(huán)結(jié)構(gòu)要在某個條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個計數(shù)變

7、量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次高二數(shù)學(xué)知識點總結(jié)41.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法2.所謂輾轉(zhuǎn)相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)

8、就是所求的公約數(shù).秦九韶算法是一種用于計算一元二次多項式的值的方法.常用的排序方法是直接插入排序和冒泡排序6.進(jìn)位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,進(jìn)制的基數(shù)是.7將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫成用各位上的數(shù)字與的冪的乘積之和的形式,再按照十進(jìn)制數(shù)的運算規(guī)則計算出結(jié)果.8將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應(yīng)的進(jìn)制數(shù)1.重點:理解輾轉(zhuǎn)相除法與更相減損術(shù)的原理,會求兩個數(shù)的公約數(shù);理解秦九韶算法原理,會求一元多項式的值;會對一組數(shù)據(jù)按照一定的規(guī)則進(jìn)行排序

9、;理解進(jìn)位制,能進(jìn)行各種進(jìn)位制之間的轉(zhuǎn)化.難點:秦九韶算法求一元多項式的值及各種進(jìn)位制之間的轉(zhuǎn)化.3.重難點:理解輾轉(zhuǎn)相除法與更相減損術(shù)、秦九韶算法原理、排序方法、進(jìn)位制之間的轉(zhuǎn)化方法.高二數(shù)學(xué)知識點總結(jié)51.計數(shù)原理知識點乘法原理:Nn1n2nn(分步)加法原理:N=n+n2n3+nM(分類)2.排列(有序)與組合(無序)Anmn(n1)()(n3)-(n-m+1)=n!(nm)!Ann=!Cm=!/(nm)!m!Cnm=Cnn-mC+nm1=Cn+1m+1k?!=(k+1)!k!3.排列組合混合題的解題原則:先選后排,先分再排排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的

10、要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置捆綁法(集團(tuán)元素法,把某些必須在一起的元素視為一個整體考慮)插空法(解決相間問題)間接法和去雜法等等在求解排列與組合應(yīng)用問題時,應(yīng)注意:(1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;()通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;(3)分析題目條件,避免“選取”時重復(fù)和遺漏;()列出式子計算和作答.經(jīng)常運用的數(shù)學(xué)思想是:分類討論思想;轉(zhuǎn)化思想;對稱思想4.二項式定理知識點:(ab)n=C0axn1an-1b1Cnn2b2+Cn3an-3b3+nrn-r+Cnna-1nnb特別地:(1+x)n=1+Cn1+Cnx+Cnx+Cn主要性質(zhì)和主要結(jié)論:對稱性CnmCn-m二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)所有二項式系數(shù)的和:C0+Cn1n2+Cn3C4+CnCn=2奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和Cn+Cn2+n4+C6+C+=Cn1n+C5C7C92n-1通項為第r+1項:Tr+1Cnra-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論