下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、知識(shí)點(diǎn)歸納1向量的概念:向量:既有大小又有方向的量向量一般用來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫(xiě)字母表示,如:幾何表示法 ,;坐標(biāo)表示法 向量的大小即向量的模(長(zhǎng)度),記作|即向量的大小,記作向量不能比較大小,但向量的模可以比較大小零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行零向量0由于的方向是任意的,且規(guī)定平行于任何向量,故在有關(guān)向量平行(共線)的問(wèn)題中務(wù)必看清楚是否有“非零向量”這個(gè)條件(注意與0的區(qū)別)單位向量:模為1個(gè)單位長(zhǎng)度的向量向量為單位向量1平行向量(共線向量):方向相同或相反的非零向量任意一組平行向量都可以移到同一直線上方向相同或相反的向量,稱(chēng)為平行向量記作由
2、于向量可以進(jìn)行任意的平移(即自由向量),平行向量總可以平移到同一直線上,故平行向量也稱(chēng)為共線向量數(shù)學(xué)中研究的向量是自由向量,只有大小、方向兩個(gè)要素,起點(diǎn)可以任意選取,現(xiàn)在必須區(qū)分清楚共線向量中的“共線”與幾何中的“共線”、的含義,要理解好平行向量中的“平行”與幾何中的“平行”是不一樣的相等向量:長(zhǎng)度相等且方向相同的向量相等向量經(jīng)過(guò)平移后總可以重合,記為大小相等,方向相同2向量加法求兩個(gè)向量和的運(yùn)算叫做向量的加法設(shè),則+=(1);(2)向量加法滿足交換律與結(jié)合律;向量加法有“三角形法則”與“平行四邊形法則”:(1)用平行四邊形法則時(shí),兩個(gè)已知向量是要共始點(diǎn)的,和向量是始點(diǎn)與已知向量的始點(diǎn)重合的那
3、條對(duì)角線,而差向量是另一條對(duì)角線,方向是從減向量指向被減向量(2)三角形法則的特點(diǎn)是“首尾相接”,由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)的有向線段就表示這些向量的和;差向量是從減向量的終點(diǎn)指向被減向量的終點(diǎn)當(dāng)兩個(gè)向量的起點(diǎn)公共時(shí),用平行四邊形法則;當(dāng)兩向量是首尾連接時(shí),用三角形法則向量加法的三角形法則可推廣至多個(gè)向量相加:,但這時(shí)必須“首尾相連”3向量的減法 相反向量:與長(zhǎng)度相等、方向相反的向量,叫做的相反向量記作,零向量的相反向量仍是零向量關(guān)于相反向量有: (i)=; (ii) +()=()+=;(iii)若、是互為相反向量,則=,=,+=向量減法:向量加上的相反向量叫做與的差,記作:求兩
4、個(gè)向量差的運(yùn)算,叫做向量的減法作圖法:可以表示為從的終點(diǎn)指向的終點(diǎn)的向量(、有共同起點(diǎn))4實(shí)數(shù)與向量的積:實(shí)數(shù)與向量的積是一個(gè)向量,記作,它的長(zhǎng)度與方向規(guī)定如下:();()當(dāng)時(shí),的方向與的方向相同;當(dāng)時(shí),的方向與的方向相反;當(dāng)時(shí),方向是任意的數(shù)乘向量滿足交換律、結(jié)合律與分配律5兩個(gè)向量共線定理:向量與非零向量共線有且只有一個(gè)實(shí)數(shù),使得=6平面向量的基本定理:如果是一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對(duì)這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)使:,其中不共線的向量叫做表示這一平面內(nèi)所有向量的一組基底7 特別注意:(1)向量的加法與減法是互逆運(yùn)算(2)相等向量與平行向量有區(qū)別,向量平行是向量相等的必要條
5、件(3)向量平行與直線平行有區(qū)別,直線平行不包括共線(即重合),而向量平行則包括共線(重合)的情況(4)向量的坐標(biāo)與表示該向量的有向線條的始點(diǎn)、終點(diǎn)的具體位置無(wú)關(guān),只與其相對(duì)位置有關(guān)學(xué)習(xí)本章主要樹(shù)立數(shù)形轉(zhuǎn)化和結(jié)合的觀點(diǎn),以數(shù)代形,以形觀數(shù),用代數(shù)的運(yùn)算處理幾何問(wèn)題,特別是處理向量的相關(guān)位置關(guān)系,正確運(yùn)用共線向量和平面向量的基本定理,計(jì)算向量的模、兩點(diǎn)的距離、向量的夾角,判斷兩向量是否垂直等由于向量是一新的工具,它往往會(huì)與三角函數(shù)、數(shù)列、不等式、解幾等結(jié)合起來(lái)進(jìn)行綜合考查,是知識(shí)的交匯點(diǎn)例1給出下列命題:若|,則=;若A,B,C,D是不共線的四點(diǎn),則是四邊形ABCD為平行四邊形的充要條件;若=,
6、=,則=,=的充要條件是|=|且/;若/,/,則/,其中正確的序號(hào)是例2 設(shè)A、B、C、D、O是平面上的任意五點(diǎn),試化簡(jiǎn):,例3設(shè)非零向量、不共線,=k+,=+k (kÎR),若,試求k1平面向量的坐標(biāo)表示:在直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量作為基底由平面向量的基本定理知,該平面內(nèi)的任一向量可表示成,由于與數(shù)對(duì)(x,y)是一一對(duì)應(yīng)的,因此把(x,y)叫做向量的坐標(biāo),記作=(x,y),其中x叫作在x軸上的坐標(biāo),y叫做在y軸上的坐標(biāo)(1)相等的向量坐標(biāo)相同,坐標(biāo)相同的向量是相等的向量(2)向量的坐標(biāo)與表示該向量的有向線段的始點(diǎn)、終點(diǎn)的具體位置無(wú)關(guān),只與其相對(duì)位置有關(guān)
7、2平面向量的坐標(biāo)運(yùn)算:(1) 若,則(2) 若,則(3) 若=(x,y),則=(x,y)(4) 若,則(5) 若,則若,則3向量的運(yùn)算向量的加減法,數(shù)與向量的乘積,向量的數(shù)量(內(nèi)積)及其各運(yùn)算的坐標(biāo)表示和性質(zhì) 運(yùn)算類(lèi)型幾何方法坐標(biāo)方法運(yùn)算性質(zhì)向量的加法1平行四邊形法則2三角形法則向量的減法三角形法則向量的乘法是一個(gè)向量,滿足:>0時(shí),與同向;<0時(shí),與異向;=0時(shí),=向量的數(shù)量積是一個(gè)數(shù)或時(shí),=0且時(shí),例1已知向量,且,求實(shí)數(shù)的值例2已知點(diǎn),試用向量方法求直線和(為坐標(biāo)原點(diǎn))交點(diǎn)的坐標(biāo)三平面向量的數(shù)量積1兩個(gè)向量的數(shù)量積:已知兩個(gè)非零向量與,它們的夾角為,則·=·
8、;cos叫做與的數(shù)量積(或內(nèi)積) 規(guī)定2向量的投影:cos=R,稱(chēng)為向量在方向上的投影投影的絕對(duì)值稱(chēng)為射影3數(shù)量積的幾何意義:·等于的長(zhǎng)度與在方向上的投影的乘積4向量的模與平方的關(guān)系:5乘法公式成立:;6平面向量數(shù)量積的運(yùn)算律:交換律成立:對(duì)實(shí)數(shù)的結(jié)合律成立:分配律成立:特別注意:(1)結(jié)合律不成立:;(2)消去律不成立不能得到(3)=0不能得到=或=7兩個(gè)向量的數(shù)量積的坐標(biāo)運(yùn)算:已知兩個(gè)向量,則·=8向量的夾角:已知兩個(gè)非零向量與,作=, =,則AOB=()叫做向量與的夾角cos=當(dāng)且僅當(dāng)兩個(gè)非零向量與同方向時(shí),=00,當(dāng)且僅當(dāng)與反方向時(shí)=1800,同時(shí)與其它任何非零向量之間不談夾角這一問(wèn)題9垂直:如果與的夾角為900則稱(chēng)與垂直,記作10兩個(gè)非零向量垂直的充要條
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園心理健康合同:校園心理健康服務(wù)承包協(xié)議
- 新疆維吾爾自治區(qū)勞動(dòng)合同范本樣本
- 山林承包合同使用指南
- 2024年范文生態(tài)園土地承包合同
- 2024試析《物業(yè)服務(wù)合同》的解除或終止問(wèn)題
- 2024小吃加盟合同范本
- 物業(yè)管理服務(wù)協(xié)議參考樣本
- 個(gè)人建房施工合同范本
- 2024廣告設(shè)計(jì)類(lèi)合同范本
- 解除版權(quán)買(mǎi)賣(mài)合同協(xié)議
- 期刊編輯的學(xué)術(shù)期刊編輯規(guī)范考核試卷
- T-CCSAS014-2022《化工企業(yè)承包商安全管理指南》
- 電梯安全總監(jiān)和安全員的任命文件
- SL-T+62-2020水工建筑物水泥灌漿施工技術(shù)規(guī)范
- 2024年安徽省普通高中學(xué)業(yè)水平選擇性考試 歷史試卷
- 電子商務(wù)師職業(yè)技能等級(jí)證書(shū)培訓(xùn)方案
- JBT 14615-2024 內(nèi)燃機(jī) 活塞運(yùn)動(dòng)組件 清潔度限值及測(cè)定方法(正式版)
- DL5009.2-2013電力建設(shè)安全工作規(guī)程第2部分:電力線路
- 理智與情感:愛(ài)情的心理文化之旅智慧樹(shù)知到期末考試答案章節(jié)答案2024年昆明理工大學(xué)
- GA/T 2097-2023執(zhí)法辦案管理場(chǎng)所信息應(yīng)用技術(shù)要求
- GB 20052-2024電力變壓器能效限定值及能效等級(jí)
評(píng)論
0/150
提交評(píng)論