21平方根(第1課時)教學(xué)設(shè)計_第1頁
21平方根(第1課時)教學(xué)設(shè)計_第2頁
21平方根(第1課時)教學(xué)設(shè)計_第3頁
21平方根(第1課時)教學(xué)設(shè)計_第4頁
21平方根(第1課時)教學(xué)設(shè)計_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第二章 實數(shù)2. 平方根(第1課時)成都鐵中 劉強 霍佳一、學(xué)生起點分析學(xué)生的知識技能基礎(chǔ):學(xué)生剛學(xué)完勾股定理,通過本章第一節(jié)的學(xué)習(xí),已具備了對無理數(shù)的認(rèn)識,知道只有有理數(shù)是不夠的學(xué)生還具備了乘方運算的基礎(chǔ),并且有計算正方形等幾何圖形面積的技能學(xué)生活動經(jīng)驗基礎(chǔ):在前面的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具備了一定的合作學(xué)習(xí)的經(jīng)驗,具備了一定的合作與交流的能力二、教學(xué)任務(wù)分析本節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書北師大版八年級(上)第二章實數(shù)的第二節(jié)平方根本節(jié)內(nèi)容計2個課時,本節(jié)課是第1課時,主要是算術(shù)平方根的概念和性質(zhì)的教學(xué)課程標(biāo)準(zhǔn)要求,對于數(shù)學(xué)概念的教學(xué),要關(guān)注概念的實際背景與形成過

2、程,力求從學(xué)生實際出發(fā),以他們熟悉的問題情景引入學(xué)習(xí)主題,在關(guān)注現(xiàn)實生活的同時,更加關(guān)注數(shù)學(xué)知識內(nèi)部的挑戰(zhàn)性,因此確定本節(jié)的教學(xué)目標(biāo)如下:了解算術(shù)平方根的概念,會用根號表示一個數(shù)的算術(shù)平方根;了解求一個正數(shù)的算術(shù)平方根與平方是互逆的運算,會利用這個互逆運算關(guān)系求非負(fù)數(shù)的算術(shù)平方根;了解算術(shù)平方根的性質(zhì)在概念形成過程中,讓學(xué)生體會知識的來源與發(fā)展,提高學(xué)生的思維能力;在合作交流等活動中,培養(yǎng)他們的合作精神和創(chuàng)新意識讓學(xué)生積極參與教學(xué)活動,培養(yǎng)他們對數(shù)學(xué)的好奇心和求知欲三、教學(xué)過程設(shè)計本課時設(shè)計六個環(huán)節(jié):第一環(huán)節(jié):問題情境;第二環(huán)節(jié):初步探究;第三環(huán)節(jié):深入探究;第四環(huán)節(jié):反饋練習(xí);第五環(huán)節(jié):學(xué)習(xí)

3、小結(jié);第六環(huán)節(jié):作業(yè)布置本節(jié)課教學(xué)流程為:問題情境初步探究反饋練習(xí)學(xué)習(xí)小結(jié)作業(yè)布置深入探究第一環(huán)節(jié):問題情境方法一:問題導(dǎo)入內(nèi)容:上節(jié)課學(xué)習(xí)了無理數(shù),了解到無理數(shù)產(chǎn)生的實際背景和引入的必要性,掌握了無理數(shù)的概念,知道有理數(shù)和無理數(shù)的區(qū)別是:有理數(shù)是有限小數(shù)或無限循環(huán)小數(shù),無理數(shù)是無限不循環(huán)小數(shù)比如上一節(jié)課我們做過的:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為的大的正方形,那么有, ,2是有理數(shù),而是無理數(shù)在前面我們學(xué)過若,則叫的平方,反過來叫的什么呢?本節(jié)課我們一起來學(xué)習(xí)方法二:問題導(dǎo)入內(nèi)容:前面我們學(xué)習(xí)了勾股定理,請大家根據(jù)勾股定理,結(jié)合圖形完成填空: , , , 目的:方

4、法一和二都是帶著問題進(jìn)入到這節(jié)課的學(xué)習(xí),讓學(xué)生體會到學(xué)習(xí)算術(shù)平方根的必要性效果:能表示,;能求得,但不能求得,的值說明:方法一的引入是由上節(jié)課“數(shù)怎么又不夠用了”的例子,起到了承前啟后的作用,方法二的引入是由學(xué)生學(xué)習(xí)了第一章“勾股定理”后的應(yīng)用,說明學(xué)習(xí)這節(jié)課的必要性相對而言,建議選用方法二第二環(huán)節(jié):初步探究內(nèi)容1:情境引出新概念,已知冪和指數(shù),求底數(shù),你能求出來嗎?目的:讓學(xué)生體驗概念形成過程,感受到概念引入的必要性效果:學(xué)生可以估算出,是1到2之間的數(shù),是2到3之間的數(shù)但無法表示,從而激發(fā)學(xué)生繼續(xù)往下學(xué)習(xí)的興趣,進(jìn)而引入新的運算開方說明:無論是用方法一引入,還是方法二引入,都是激發(fā)學(xué)生繼續(xù)

5、往下學(xué)習(xí)的興趣,都可以提出同樣的問題“已知冪和指數(shù),求底數(shù),你能求出來嗎?” 內(nèi)容2:在上面思考的基礎(chǔ)上,明晰概念:一般地,如果一個正數(shù)的平方等于,即,那么這個正數(shù)就叫做的算術(shù)平方根,記為“”,讀作“根號”特別地,我們規(guī)定0的算術(shù)平方根是0,即目的:對算術(shù)平方根概念的認(rèn)識效果:了解算術(shù)平方根的概念,知道平方運算和求正數(shù)的算術(shù)平方根是互逆的 內(nèi)容3:簡單運用 鞏固概念例1 求下列各數(shù)的算術(shù)平方根:(1) 900; (2) 1; (3) ; (4) 14目的:體驗求一個正數(shù)的算術(shù)平方根的過程,利用平方運算求一個正數(shù)的算術(shù)平方根的方法,讓學(xué)生明白有的正數(shù)的算術(shù)平方根可以開出來,有的正數(shù)的算術(shù)平方根只

6、能用根號表示,如14的算術(shù)平方根是效果:會求一個正數(shù)的算術(shù)平方根,更進(jìn)一步了解算術(shù)平方根的性質(zhì):一個正數(shù)的算術(shù)平方根是正數(shù),0的算術(shù)平方根是0,負(fù)數(shù)沒有算術(shù)平方根答案:解:(1)因為,所以900的算術(shù)平方根是30,即;(2)因為,所以1的算術(shù)平方根是1,即;(3)因為,所以 的算術(shù)平方根是, 即; (4)14的算術(shù)平方根是內(nèi)容4:回解課堂引入問題,那么,第三環(huán)節(jié):深入探究內(nèi)容1:例2 自由下落物體的高度(米)與下落時間(秒)的關(guān)系為有一鐵球從19.6米高的建筑物上自由下落,到達(dá)地面需要多長時間?目的:用算術(shù)平方根的知識解決實際問題效果:學(xué)生多能利用等式的性質(zhì)將進(jìn)行變形,再用求算術(shù)平方根的方法求

7、得題目的解解:將代入公式,得,所以正數(shù)(秒)即鐵球到達(dá)地面需要2秒說明:強調(diào)實際問題是正數(shù),用的是算術(shù)平方根,此題是為得出下面的結(jié)論作鋪墊的內(nèi)容2:觀察我們剛才求出的算術(shù)平方根有什么特點目的:讓學(xué)生認(rèn)識到算術(shù)平方根定義中的兩層含義:中的是一個非負(fù)數(shù),的算術(shù)平方根也是一個非負(fù)數(shù),負(fù)數(shù)沒有算術(shù)平方根這也是算術(shù)平方根的性質(zhì)雙重非負(fù)性效果:再一次深入地認(rèn)識算術(shù)平方根的概念,明確只有非負(fù)數(shù)才有算術(shù)平方根第四環(huán)節(jié):反饋練習(xí)一、填空題:1若一個數(shù)的算術(shù)平方根是,那么這個數(shù)是 ;2的算術(shù)平方根是 ;3的算術(shù)平方根是 ;4若,則 二、求下列各數(shù)的算術(shù)平方根: 36,15,0.64,三、如圖,從帳篷支撐竿AB的頂

8、部A向地面拉一根繩子AC固定帳篷若繩子的長度為5.5米,地面固定點C到帳篷支撐竿底部B的距離是4.5米,則帳篷支撐竿的高是多少米?答案:一、17;2;3;416;二、6;0.8;1三、解:由題意得 AC5.5米,BC4.5米,ABC90°,在RtABC中,由勾股定理得(米)所以帳篷支撐竿的高是米目的:旨在檢測學(xué)生對算術(shù)平方根的概念和性質(zhì)的掌握情況,以便根據(jù)學(xué)生情況調(diào)整教學(xué)進(jìn)程.效果:練習(xí)注意了問題的梯度性,由淺入深,一步步加深對算術(shù)平方根的概念以及性質(zhì)的認(rèn)識.對學(xué)生的回答,教師要給予評價和點評第五環(huán)節(jié):學(xué)習(xí)小結(jié)內(nèi)容:這節(jié)課學(xué)習(xí)的算術(shù)平方根是本章的基本概念,是為以后的學(xué)習(xí)做鋪墊的通過這

9、節(jié)課的學(xué)習(xí),我們要掌握以下的內(nèi)容:(1)算術(shù)平方根的概念,式子中的雙重非負(fù)性:一是a0,二是0(2)算術(shù)平方根的性質(zhì):一個正數(shù)的算術(shù)平方根是一個正數(shù);0的算術(shù)平方根是0;負(fù)數(shù)沒有算術(shù)平方根(3)求一個正數(shù)的算術(shù)平方根的運算與平方運算是互逆的運算,利用這個互逆運算關(guān)系求非負(fù)數(shù)的算術(shù)平方根目的:依照本節(jié)課的教學(xué)目標(biāo)引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點,強化算術(shù)平方根的概念和性質(zhì) 第六環(huán)節(jié):作業(yè)布置習(xí)題2.3四、教學(xué)設(shè)計反思1細(xì)講概念、強化訓(xùn)練要想讓學(xué)生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的概念的形成過程也是思維過程,加強概念形成過程的教學(xué),對提高學(xué)生的思維水平是很有必要的概念教學(xué)過程中要做到:講清概念,加強訓(xùn)練,逐步深化 “講清概念”就是通過具體實例揭露算術(shù)平方根的本質(zhì)特征算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個正數(shù)的平方等于,即,那么這個正數(shù)就叫做的算術(shù)平方根,”的“正數(shù)”,即被開方數(shù)是正的,由平方的意義,也是正數(shù),因此算術(shù)平方根也必須是正的當(dāng)然零的算術(shù)平方根是零.“加強訓(xùn)練”不但指要加強求算術(shù)平方根的基本訓(xùn)練,使練習(xí)題達(dá)到一定的質(zhì)和量,也包括書寫格式的訓(xùn)練,如在求正數(shù)的算術(shù)平方根時,不是直接寫出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論