多面體外接球半徑內(nèi)切球半徑常見幾種求法_第1頁(yè)
多面體外接球半徑內(nèi)切球半徑常見幾種求法_第2頁(yè)
多面體外接球半徑內(nèi)切球半徑常見幾種求法_第3頁(yè)
多面體外接球半徑內(nèi)切球半徑常見幾種求法_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、多面體外接球、內(nèi)切球半徑常見的5種求法如果一個(gè)多面體的各個(gè)頂點(diǎn)都在同一個(gè)球面上,那么稱這個(gè)多面體是球的內(nèi)接多面體,這個(gè)球稱為多面體的外接球.有關(guān)多面體外接球的問題,是立體幾何的一個(gè)重點(diǎn),也是高考考查的一個(gè)熱點(diǎn).研究多面體的外接球問題,既要運(yùn)用多面體的知識(shí),又要運(yùn)用球的知識(shí),并且還要特別注意多面體的有關(guān)幾何元素與球的半徑之間的關(guān)系,而多面體外接球半徑的求法在解題中往往會(huì)起到至關(guān)重要的作用.公式法例1 一個(gè)六棱柱的底面是正六邊形,其側(cè)棱垂直于底面,已知該六棱柱的頂點(diǎn)都在同一個(gè)球面上,且該六棱柱的體積為,底面周長(zhǎng)為,則這個(gè)球的體積為 .解 設(shè)正六棱柱的底面邊長(zhǎng)為,高為,則有 正六棱柱的底面圓的半徑,

2、球心到底面的距離.外接球的半徑.小結(jié) 本題是運(yùn)用公式求球的半徑的,該公式是求球的半徑的常用公式.多面體幾何性質(zhì)法例2 已知各頂點(diǎn)都在同一個(gè)球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是A. B. C. D.解 設(shè)正四棱柱的底面邊長(zhǎng)為,外接球的半徑為,則有,解得.這個(gè)球的表面積是.選C.小結(jié) 本題是運(yùn)用“正四棱柱的體對(duì)角線的長(zhǎng)等于其外接球的直徑”這一性質(zhì)來(lái)求解的.補(bǔ)形法例3 若三棱錐的三個(gè)側(cè)棱兩兩垂直,且側(cè)棱長(zhǎng)均為,則其外接球的表面積是 .解 據(jù)題意可知,該三棱錐的三條側(cè)棱兩兩垂直,把這個(gè)三棱錐可以補(bǔ)成一個(gè)棱長(zhǎng)為的正方體,于是正方體的外接球就是三棱錐的外接球.設(shè)其外接球的半徑為,則有.

3、故其外接球的表面積.小結(jié) 一般地,若一個(gè)三棱錐的三條側(cè)棱兩兩垂直,且其長(zhǎng)度分別為,則就可以將這個(gè)三棱錐補(bǔ)成一個(gè)長(zhǎng)方體,于是長(zhǎng)方體的體對(duì)角線的長(zhǎng)就是該三棱錐的外接球的直徑.設(shè)其外接球的半徑為,則有.尋求軸截面圓半徑法例4 正四棱錐的底面邊長(zhǎng)和各側(cè)棱長(zhǎng)都為,點(diǎn)都在同一球面上,則此球的體積為 .解 設(shè)正四棱錐的底面中心為,外接球的球心為,如圖3所示.由球的截面的性質(zhì),可得.又,球心必在所在的直線上.的外接圓就是外接球的一個(gè)軸截面圓,外接圓的半徑就是外接球的半徑.在中,由,得.是外接圓的半徑,也是外接球的半徑.故.小結(jié) 根據(jù)題意,我們可以選擇最佳角度找出含有正棱錐特征元素的外接球的一個(gè)軸截面圓,于是該

4、圓的半徑就是所求的外接球的半徑.本題提供的這種思路是探求正棱錐外接球半徑的通解通法,該方法的實(shí)質(zhì)就是通過尋找外接球的一個(gè)軸截面圓,從而把立體幾何問題轉(zhuǎn)化為平面幾何問題來(lái)研究.這種等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想方法值得我們學(xué)習(xí).確定球心位置法例5 在矩形中,沿將矩形折成一個(gè)直二面角,則四面體的外接球的體積為A. B. C. D.解 設(shè)矩形對(duì)角線的交點(diǎn)為,則由矩形對(duì)角線互相平分,可知.點(diǎn)到四面體的四個(gè)頂點(diǎn)的距離相等,即點(diǎn)為四面體的外接球的球心,如圖2所示.外接球的半徑.故.選C.出現(xiàn)多個(gè)垂直關(guān)系時(shí)建立空間直角坐標(biāo)系,利用向量知識(shí)求解【例題】:已知在三棱錐中,求該棱錐的外接球半徑。解:由已知建立空間直角坐標(biāo)系

5、由平面知識(shí)得 設(shè)球心坐標(biāo)為 則,由空間兩點(diǎn)間距離公式知 解得 所以半徑為【結(jié)論】:空間兩點(diǎn)間距離公式:四面體是正四面體 外接球與內(nèi)切球的圓心為正四面體高上的一個(gè)點(diǎn), 根據(jù)勾股定理知,假設(shè)正四面體的邊長(zhǎng)為時(shí),它的外接球半徑為。內(nèi)切球的半徑正方體的內(nèi)切球:設(shè)正方體的棱長(zhǎng)為,求(1)內(nèi)切球半徑;(2)外接球半徑;(3)與棱相切的球半徑。(1)截面圖為正方形的內(nèi)切圓,得;(2)與正方體各棱相切的球:球與正方體的各棱相切,切點(diǎn)為各棱的中點(diǎn),如圖4作截面圖,圓為正方形的外接圓,易得。圖3圖4圖5(3) 正方體的外接球:正方體的八個(gè)頂點(diǎn)都在球面上,如圖5,以對(duì)角面作截面圖得,圓為矩形的外接圓,易得。構(gòu)造直三

6、角形,巧解正棱柱與球的組合問題正棱柱的外接球,其球心定在上下底面中心連線的中點(diǎn)處,由球心、底面中心及底面一頂點(diǎn)構(gòu)成的直角三角形便可得球半徑。例題:已知底面邊長(zhǎng)為正三棱柱的六個(gè)頂點(diǎn)在球上,又知球與此正三棱柱的5個(gè)面都相切,求球與球的體積之比與表面積之比。分析:先畫出過球心的截面圖,再來(lái)探求半徑之間的關(guān)系。圖6解:如圖6,由題意得兩球心、是重合的,過正三棱柱的一條側(cè)棱和它們的球心作截面,設(shè)正三棱柱底面邊長(zhǎng)為,則,正三棱柱的高為,由中,得,圖1二 棱錐的內(nèi)切、外接球問題4 .正四面體的外接球和內(nèi)切球的半徑是多少? 分析:運(yùn)用正四面體的二心合一性質(zhì),作出截面圖,通過點(diǎn)、線、面關(guān)系解之。解:如圖1所示,設(shè)點(diǎn)是內(nèi)切球的球心,正四面體棱長(zhǎng)為由圖形的對(duì)稱性知,點(diǎn)也是外接球的球心設(shè)內(nèi)切球半徑為,外接球半徑為在中,即,得,得【點(diǎn)評(píng)】由于正四面體本身的對(duì)稱性可知,內(nèi)切球和外接球的兩個(gè)球心是重合的,為正四面體高的四等分點(diǎn),即內(nèi)切球的半徑

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論