高中數(shù)學(xué)向量法解立體幾何總結(jié)_第1頁
高中數(shù)學(xué)向量法解立體幾何總結(jié)_第2頁
高中數(shù)學(xué)向量法解立體幾何總結(jié)_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、向量法解立體幾何1、直線的方向向量和平面的法向量直線的方向向量: 若A、B是直線上的任意兩點,則為直線的一個方向向量;與平行的任意非零向量也是直線的方向向量.平面的法向量: 若向量所在直線垂直于平面,則稱這個向量垂直于平面,記作,如果,那么向量叫做平面的法向量. 平面的法向量的求法(待定系數(shù)法): 建立適當?shù)淖鴺讼翟O(shè)平面的法向量為求出平面內(nèi)兩個不共線向量的坐標根據(jù)法向量定義建立方程組.解方程組,取其中一組解,即得平面的法向量. 2、用向量方法判定空間中的平行關(guān)系線線平行。設(shè)直線的方向向量分別是,則要證明,只需證明,即.線面平行。設(shè)直線的方向向量是,平面的法向量是,則要證明,只需證明,即.面面平

2、行。若平面的法向量為,平面的法向量為,要證,只需證,即證.3、用向量方法判定空間的垂直關(guān)系線線垂直。設(shè)直線的方向向量分別是,則要證明,只需證明,即.線面垂直(法一)設(shè)直線的方向向量是,平面的法向量是,則要證明,只需證明,即.(法二)設(shè)直線的方向向量是,平面內(nèi)的兩個相交向量分別為,若面面垂直。 若平面的法向量為,平面的法向量為,要證,只需證,即證.4、利用向量求空間角求異面直線所成的角已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則求直線和平面所成的角求法:設(shè)直線的方向向量為,平面的法向量為,直線與平面所成的角為,與的夾角為,則為的余角或的補角的余角.即有:求二面角二面角的平面

3、角是指在二面角的棱上任取一點O,分別在兩個半平面內(nèi)作射線,則為二面角的平面角.OABOABl如圖:求法:設(shè)二面角的兩個半平面的法向量分別為,再設(shè)的夾角為,二面角的平面角為,則二面角為的夾角或其補角根據(jù)具體圖形確定是銳角或是鈍角:如果是銳角,則, 即;如果是鈍角,則, 即.5、利用法向量求空間距離點Q到直線距離 若Q為直線外的一點,在直線上,為直線的方向向量,=,則點Q到直線距離為 點A到平面的距離若點P為平面外一點,點M為平面內(nèi)任一點,平面的法向量為,則P到平面的距離就等于在法向量方向上的投影的絕對值. 即直線與平面之間的距離 當一條直線和一個平面平行時,直線上的各點到平面的距離相等。由此可知,直線到平面的距離可轉(zhuǎn)化為求直線上任一點到平面的距離,即轉(zhuǎn)化為點面距離。 即兩平行平面之間的距離 利用兩平行平面間的距離處處相等,可將兩平行平面間的距離轉(zhuǎn)化為求點面距離

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論