第2章 3 第1課時 條件概率_第1頁
第2章 3 第1課時 條件概率_第2頁
第2章 3 第1課時 條件概率_第3頁
第2章 3 第1課時 條件概率_第4頁
第2章 3 第1課時 條件概率_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、.§3條件概率與獨立事件第1課時條件概率1理解條件概率的概念重點2掌握條件概率的兩種方法重點3能利用條件概率公式解決一些簡單的實際問題難點根底·初探教材整理條件概率閱讀教材P43部分,完成以下問題1條件概率1條件概率的定義B發(fā)生的條件下,A發(fā)生的概率,稱為B發(fā)生時A發(fā)生的條件概率,記為_2條件概率公式當PB>0時,有PA|B_其中,AB也可以記成_;當PA>0時,有PB|A_.2條件概率的性質(zhì)1PB|A_.2假如B與C是兩個互斥事件,那么PBC|APB|APC|A【答案】1.1PA|B2AB2.10,1設A,B為兩個事件,且PA>0,假設PAB,PA,那么

2、PB|A_.【解析】由PB|A.【答案】質(zhì)疑·手記預習完成后,請將你的疑問記錄,并與“小伙伴們討論交流:疑問1:解惑:疑問2:解惑:疑問3:解惑:小組合作型利用定義求條件概率一個袋中有2個黑球和3個白球,假如不放回地抽取兩個球,記事件“第一次抽到黑球為A;事件“第二次抽到黑球為B.1分別求事件A,B,AB發(fā)生的概率;2求PB|A【精彩點撥】首先弄清“這次試驗指的是什么,然后判斷該問題是否屬于古典概型,最后利用相應公式求解【自主解答】由古典概型的概率公式可知1PA,PB,PAB.2PB|A.1用定義法求條件概率PB|A的步驟1分析題意,弄清概率模型;2計算PA,PAB;3代入公式求PB

3、|A.2在2題中,首先結(jié)合古典概型分別求出了事件A、B的概率,從而求出PB|A,提醒出PA,PB和PB|A三者之間的關系再練一題1有一批種子的發(fā)芽率為0.9,出芽后的幼苗成活率為0.8,在這批種子中,隨機抽取一粒,那么這粒種子能成長為幼苗的概率為_【解析】設“種子發(fā)芽為事件A,“種子成長為幼苗為事件AB發(fā)芽,又成活為幼苗,出芽后的幼苗成活率為PB|A0.8,又PA0.9,PB|A,得PABPB|A·PA0.8×0.90.72.【答案】0.72利用根本領件個數(shù)求條件概率現(xiàn)有6個節(jié)目準備參加比賽,其中4個舞蹈節(jié)目,2個語言類節(jié)目,假如不放回地依次抽取2個節(jié)目,求:1第1次抽到舞

4、蹈節(jié)目的概率;2第1次和第2次都抽到舞蹈節(jié)目的概率;3在第1次抽到舞蹈節(jié)目的條件下,第2次抽到舞蹈節(jié)目的概率【精彩點撥】第1、2問屬古典概型問題,可直接代入公式;第3問為條件概率,可以借用前兩問的結(jié)論,也可以直接利用根本領件個數(shù)求解【自主解答】設第1次抽到舞蹈節(jié)目為事件A,第2次抽到舞蹈節(jié)目為事件B,那么第1次和第2次都抽到舞蹈節(jié)目為事件AB.1從6個節(jié)目中不放回地依次抽取2個的事件數(shù)為nA30,根據(jù)分步計數(shù)原理nAAA20,于是PA.2因為nABA12,于是PAB.3法一:由12可得,在第1次抽到舞蹈節(jié)目的條件下,第2次抽到舞蹈節(jié)目的概率為PB|A.法二:因為nAB12,nA20,所以PB|

5、A.1此題第3問給出了兩種求條件概率的方法,法一為定義法,法二利用根本領件個數(shù)直接作商,是一種重要的求條件概率的方法2計算條件概率的方法1在縮小后的樣本空間A中計算事件B發(fā)生的概率,即PB|A2在原樣本空間中,先計算PAB,PA,再利用公式PB|A計算求得PB|A3條件概率的算法:事件A發(fā)生,在此條件下事件B發(fā)生,即事件AB發(fā)生,要求PB|A,相當于把A看作新的根本領件空間計算事件AB發(fā)生的概率,即PB|A.再練一題2一盒子中裝有4只產(chǎn)品,其中3只一等品,1只二等品,從中取產(chǎn)品兩次,每次任取1只,做不放回抽樣設事件A為“第一次取到的是一等品,事件B為“第二次取到的是一等品,試求條件概率PB|A

6、【解】將產(chǎn)品編號,設1,2,3號產(chǎn)品為一等品,4號產(chǎn)品為二等品,以i,j表示第一次,第二次分別取到第i號,第j號產(chǎn)品,那么試驗的根本領件空間為1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3,事件A有9個根本領件,AB有6個根本領件,所以PB|A.探究共研型利用條件概率的性質(zhì)求概率探究1擲一枚質(zhì)地均勻的骰子,有多少個根本領件?它們之間有什么關系?隨機事件出現(xiàn)“大于4的點包含哪些根本領件?【提示】擲一枚質(zhì)地均勻的骰子,可能出現(xiàn)的根本領件有“1點“2點“3點“4點“5點“6點,共6個,它們彼此互斥“大于4的點包含“5點“6點兩個根本領件探究2“先后拋出

7、兩枚質(zhì)地均勻的骰子試驗中,第一枚出現(xiàn)4點,那么第二枚出現(xiàn)“大于4的事件,包含哪些根本領件?【提示】“第一枚4點,第二枚5點“第一枚4點,第二枚6點探究3先后拋出兩枚質(zhì)地均勻的骰子,第一枚出現(xiàn)4點,如何利用條件概率的性質(zhì)求第二枚出現(xiàn)“大于4點的概率?【提示】設第一枚出現(xiàn)4點為事件A,第二枚出現(xiàn)5點為事件B,第二枚出現(xiàn)6點為事件C.那么所求事件為BC|A.PBC|APB|APC|A.將外形一樣的球分裝三個盒子,每盒10個其中,第一個盒子中有7個球標有字母A,3個球標有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中有紅球8個,白球2個試驗按如下規(guī)那么進展:先在第一個盒子中任取一個球,假設獲得標

8、有字母A的球,那么在第二個盒子中任取一個球;假設第一次獲得標有字母B的球,那么在第三個盒子中任取一個球假如第二次取出的是紅球,那么試驗成功求試驗成功的概率【精彩點撥】設出根本領件,求出相應的概率,再用根本領件表示出“試驗成功這件事,求出其概率【自主解答】設A從第一個盒子中獲得標有字母A的球,B從第一個盒子中獲得標有字母B的球,R第二次取出的球是紅球,W第二次取出的球是白球,那么容易求得PA,PB,PR|A,PW|A,PR|B,PW|B.事件“試驗成功表示為RARB,又事件RA與事件RB互斥,所以由概率的加法公式得PRARBPRAPRBPR|A·PAPR|B·PB×

9、×.1假設事件B,C互斥,那么PBC|APB|APC|A2為了求復雜事件的概率,往往可以先把該事件分解成兩個或多個互斥事件,求出簡單事件概率后,相加即可得到復雜事件的概率再練一題3男人中有5%患色盲,女人中有0.25%患色盲,從100個男人和100個女人中任選一人1求此人患色盲的概率;2假如此人是色盲,求此人是男人的概率【解】設“任選一人是男人為事件A,“任選一人是女人為事件B,“任選一人是色盲為事件C.1此人患色盲的概率PCPACPBCPAPC|APBPC|B××.2PA|C.構(gòu)建·體系1把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面為事件A,“第二次出現(xiàn)反

10、面為事件B,那么PB|A等于A.B.C.D.【解析】由題意,PA,PAB,由條件概率公式得PB|A.【答案】A24張獎券中只有1張能中獎,現(xiàn)分別由4名同學無放回地抽取假設第一名同學沒有抽到中獎券,那么最后一名同學抽到中獎券的概率是A. B. C.D1【解析】因為第一名同學沒有抽到中獎券,所以問題變?yōu)?張獎券,1張能中獎,最后一名同學抽到中獎券的概率,顯然是.【答案】B3如圖2­3­1,EFGH是以O為圓心,半徑為1的圓的內(nèi)接正方形將一顆豆子隨機地扔到該圓內(nèi),用A表示事件“豆子落在正方形EFGH內(nèi),B表示事件“豆子落在扇形OHE陰影部分內(nèi),那么PB|A_.圖2­3&

11、#173;1【解析】如圖,連結(jié)OF,OG得四個全等的三角形,正方形EFGH包含4個小三角形,滿足AB的有1個小三角形故PB|A.【答案】4拋擲骰子2次,每次結(jié)果用x1,x2表示,其中x1,x2分別表示第一次、第二次骰子的點數(shù)假設設Ax1,x2|x1x210,Bx1,x2|x1>x2那么PB|A_. 【導學號:62690034】【解析】PA,PAB,PB|A.【答案】5一個口袋內(nèi)裝有2個白球和2個黑球,那么1先摸出1個白球不放回,再摸出1個白球的概率是多少?2先摸出1個白球后放回,再摸出1個白球的概率是多少?【解】1設“先摸出1個白球不放回為事件A,“再摸出1個白球為事件B,那么“先后兩次摸出白球為事件AB,“先摸一球不放回

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論